Answer
Verified
114.9k+ views
Hint: Always the resultant vector incline towards the vector which is higher in magnitude. If the two vectors have the same magnitude, the resultant vector will make equal angles with the both two vectors.
Complete step by step solution:
Let’s solve this problem with the help of a diagram. Two vectors $\overrightarrow A $ and $\overrightarrow B $ are drawn and the resultant is a vector $\overrightarrow R $ . The resultant vector $\overrightarrow R $ makes an angle $\alpha $ with the vector $\overrightarrow A $ and the resultant vector $\overrightarrow R $ makes an angle $\beta $ with the vector $\overrightarrow B $
From the details given in the diagram we can see that
Angle between the vector $\overrightarrow A $ and the resultant vector $\overrightarrow R $ = $\alpha $ .
Angle between the vector $\overrightarrow B $ and the resultant vector $\overrightarrow R $ = $\beta $ .
Total angle between the vector $\overrightarrow A $ and vector $\overrightarrow B $ = $\alpha + \beta $ .
From the diagram it is known that,
$A = R\cos \alpha $
$B = R\cos \beta $
Let’s discuss the three cases :
When $\overrightarrow A $ = $\overrightarrow B $
Applying the values of vector $\overrightarrow A $ and vector $\overrightarrow B $ ,
$\overrightarrow A $ = $\overrightarrow B $
$ \Rightarrow R\cos \alpha = R\cos \beta $
Cancelling equal terms on the right hand side and left hand side of the above equation we get:
$\cos \alpha = \cos \beta $
$ \Rightarrow \alpha = \beta $
When $\overrightarrow A $<$\overrightarrow B $
Applying the values of vector $\overrightarrow A $ and vector $\overrightarrow B $ ,
$\overrightarrow A $<$\overrightarrow B $
\[ \Rightarrow R\cos \alpha < R\cos \beta \]
Cancelling equal terms on the right hand side and left hand side of the above equation we get:
$\cos \alpha < \cos \beta $
$ \Rightarrow \alpha > \beta $
When $\overrightarrow A $>$\overrightarrow B $
Applying the values of vector $\overrightarrow A $ and vector $\overrightarrow B $ ,
$\overrightarrow A $>$\overrightarrow B $
\[ \Rightarrow R\cos \alpha > R\cos \beta \]
Cancelling equal terms on the right hand side and left hand side of the above equation we get:
$\cos \alpha > \cos \beta $
$ \Rightarrow \alpha < \beta $
By analysing these three cases we get the angle between the resultant vector $\overrightarrow R $ and the vector $\overrightarrow A $ , $\alpha $ is less than angle between the resultant vector $\overrightarrow R $ and the vector $\overrightarrow B $ , $\beta $
That is, $\alpha < \beta $ when $A > B$
Final answer is option (C): $\alpha < \beta $ if $A > B$.
Note: If two vectors acting simultaneously at a point can be represented both in magnitude and direction by the adjacent sides of a parallelogram drawn from a point, then the resultant vector is represented both in magnitude and direction by the diagonal of the parallelogram passing through that point.
Complete step by step solution:
Let’s solve this problem with the help of a diagram. Two vectors $\overrightarrow A $ and $\overrightarrow B $ are drawn and the resultant is a vector $\overrightarrow R $ . The resultant vector $\overrightarrow R $ makes an angle $\alpha $ with the vector $\overrightarrow A $ and the resultant vector $\overrightarrow R $ makes an angle $\beta $ with the vector $\overrightarrow B $
From the details given in the diagram we can see that
Angle between the vector $\overrightarrow A $ and the resultant vector $\overrightarrow R $ = $\alpha $ .
Angle between the vector $\overrightarrow B $ and the resultant vector $\overrightarrow R $ = $\beta $ .
Total angle between the vector $\overrightarrow A $ and vector $\overrightarrow B $ = $\alpha + \beta $ .
From the diagram it is known that,
$A = R\cos \alpha $
$B = R\cos \beta $
Let’s discuss the three cases :
When $\overrightarrow A $ = $\overrightarrow B $
Applying the values of vector $\overrightarrow A $ and vector $\overrightarrow B $ ,
$\overrightarrow A $ = $\overrightarrow B $
$ \Rightarrow R\cos \alpha = R\cos \beta $
Cancelling equal terms on the right hand side and left hand side of the above equation we get:
$\cos \alpha = \cos \beta $
$ \Rightarrow \alpha = \beta $
When $\overrightarrow A $<$\overrightarrow B $
Applying the values of vector $\overrightarrow A $ and vector $\overrightarrow B $ ,
$\overrightarrow A $<$\overrightarrow B $
\[ \Rightarrow R\cos \alpha < R\cos \beta \]
Cancelling equal terms on the right hand side and left hand side of the above equation we get:
$\cos \alpha < \cos \beta $
$ \Rightarrow \alpha > \beta $
When $\overrightarrow A $>$\overrightarrow B $
Applying the values of vector $\overrightarrow A $ and vector $\overrightarrow B $ ,
$\overrightarrow A $>$\overrightarrow B $
\[ \Rightarrow R\cos \alpha > R\cos \beta \]
Cancelling equal terms on the right hand side and left hand side of the above equation we get:
$\cos \alpha > \cos \beta $
$ \Rightarrow \alpha < \beta $
By analysing these three cases we get the angle between the resultant vector $\overrightarrow R $ and the vector $\overrightarrow A $ , $\alpha $ is less than angle between the resultant vector $\overrightarrow R $ and the vector $\overrightarrow B $ , $\beta $
That is, $\alpha < \beta $ when $A > B$
Final answer is option (C): $\alpha < \beta $ if $A > B$.
Note: If two vectors acting simultaneously at a point can be represented both in magnitude and direction by the adjacent sides of a parallelogram drawn from a point, then the resultant vector is represented both in magnitude and direction by the diagonal of the parallelogram passing through that point.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs