Answer
Verified
108k+ views
Hint: Check the concavity of the given quadratic equation and using this information check whether $f(a)$ is positive or negative. Also use the fact that the discriminant must be greater than 0 as real roots exist. With the two inequalities, find the range of a.
Formula used: Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$
Complete step-by-step solution:
Let $f(x) = {x^2} + x + a$
The coefficient of ${x^2}$ in the equation ${x^2} + x + a = 0$ is greater than 0. Therefore, it is a concave upwards graph. Since it is a concave upwards graph, $f(x)$ will be negative only when $x \in \left[ {p,q} \right]$ where $p,q$ are the roots.
Therefore, $f(a)$ is positive. We also know that real roots exist. Therefore, the discriminant of the quadratic equation, ${x^2} + x + a = 0$ must also be greater than 0.
Since $f(a) > 0$,
${a^2} + a + a > 0$
${a^2} + 2a > 0$
$a(a + 2) > 0$
$a \in \left( { - \infty , - 2} \right) \cup \left( {0,\infty } \right)$
Since discriminant, $D > 0$,
$1 - 4a > 0$
$4a < 1$
$a < \dfrac{1}{4}$
$a \in \left( { - \infty ,\dfrac{1}{4}} \right)$
Taking the intersection of $\left( { - \infty , - 2} \right) \cup \left( {0,\infty } \right)$ and \[\left( { - \infty ,\dfrac{1}{4}} \right)\] we get $a \in \left( { - \infty , - 2} \right)$.
Therefore, the correct answer is option D. $a < - 2$.
Note: Given a quadratic polynomial $a{x^2} + bx + c$, if $a > 0$ then the graph of the quadratic polynomial will be a concave upwards graph and if $a < 0$ then the graph of the quadratic polynomial will be a concave downwards graph.
Formula used: Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$
Complete step-by-step solution:
Let $f(x) = {x^2} + x + a$
The coefficient of ${x^2}$ in the equation ${x^2} + x + a = 0$ is greater than 0. Therefore, it is a concave upwards graph. Since it is a concave upwards graph, $f(x)$ will be negative only when $x \in \left[ {p,q} \right]$ where $p,q$ are the roots.
Therefore, $f(a)$ is positive. We also know that real roots exist. Therefore, the discriminant of the quadratic equation, ${x^2} + x + a = 0$ must also be greater than 0.
Since $f(a) > 0$,
${a^2} + a + a > 0$
${a^2} + 2a > 0$
$a(a + 2) > 0$
$a \in \left( { - \infty , - 2} \right) \cup \left( {0,\infty } \right)$
Since discriminant, $D > 0$,
$1 - 4a > 0$
$4a < 1$
$a < \dfrac{1}{4}$
$a \in \left( { - \infty ,\dfrac{1}{4}} \right)$
Taking the intersection of $\left( { - \infty , - 2} \right) \cup \left( {0,\infty } \right)$ and \[\left( { - \infty ,\dfrac{1}{4}} \right)\] we get $a \in \left( { - \infty , - 2} \right)$.
Therefore, the correct answer is option D. $a < - 2$.
Note: Given a quadratic polynomial $a{x^2} + bx + c$, if $a > 0$ then the graph of the quadratic polynomial will be a concave upwards graph and if $a < 0$ then the graph of the quadratic polynomial will be a concave downwards graph.
Recently Updated Pages
If x is real then the maximum and minimum values of class 10 maths JEE_Main
If one of the roots of equation x2+ax+30 is 3 and one class 10 maths JEE_Main
The HCF of two numbers is 96 and their LCM is 1296 class 10 maths JEE_Main
The height of a cone is 21 cm Find the area of the class 10 maths JEE_Main
In a family each daughter has the same number of brothers class 10 maths JEE_Main
If the vertices of a triangle are ab cc b0 and b0c class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Lattice energy of an ionic compound depends upon A class 11 chemistry JEE_Main
As a result of isobaric heating Delta T 72K one mole class 11 physics JEE_Main
The graph of current versus time in a wire is given class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A 5m long pole of 3kg mass is placed against a smooth class 11 physics JEE_Main