
If the temperature of a hot body is raised by 0.5%, then the heat energy radiated would increases by:
(A) 0.5%
(B) 1.0%
(C) 1.5%
(D) 2.0%
Answer
146.7k+ views
Hint Heat energy radiated is proportional to fourth power of temperature. So the ratio of final heat energy to the initial is equal to the fourth power, the ratio of the final temperature to the initial temperature. The final temperature is changed by 0.5%. Incorporating this change, the change in heat radiation is evaluated.
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
