If the temperature of a hot body is raised by 0.5%, then the heat energy radiated would increases by:
(A) 0.5%
(B) 1.0%
(C) 1.5%
(D) 2.0%
Answer
Verified
116.4k+ views
Hint Heat energy radiated is proportional to fourth power of temperature. So the ratio of final heat energy to the initial is equal to the fourth power, the ratio of the final temperature to the initial temperature. The final temperature is changed by 0.5%. Incorporating this change, the change in heat radiation is evaluated.
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Charging and Discharging of Capacitor
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids