Answer
Verified
103.5k+ views
Hint Heat energy radiated is proportional to fourth power of temperature. So the ratio of final heat energy to the initial is equal to the fourth power, the ratio of the final temperature to the initial temperature. The final temperature is changed by 0.5%. Incorporating this change, the change in heat radiation is evaluated.
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Complete step-by-step answer
The rate at which heat energy is radiated by a hot body is given by
$Q = \sigma {T^4}A$
From this we know that
$Q \propto {T^4}$
So, let Q1 and Q2 be the initial and final heat energy at temperatures T1 and T2 respectively.
It is given that temperature is increased by 0.5%, so
T1= t K
\[{T_2} = {\text{ }}t{\text{ }} + {\text{ }}(0.5{\text{ }}\% {\text{ }} \times t){\text{ }} = 1.005t{\text{ }}K\]
Using the temperature and energy relation above,
$
\dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}} \\
{Q_2} = \dfrac{{{{(1.005t)}^4} \times {Q_1}}}{{{t^4}}} \\
{Q_2} = 1.02{Q_1} \\
$
Now, percentage increase in heat energy radiated is given by,
$
\Delta Q\% = \dfrac{{{Q_2} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = \dfrac{{1.02{Q_1} - {Q_1}}}{{{Q_1}}} \times 100 \\
\Delta Q\% = 0.02 \times 100 \\
\Delta Q\% = 2\% \\
$
Hence, the heat energy radiated is increased by 2%
The correct option is D.
Note The rate at which the heat energy radiated by the hot body depends on area of the body and temperature. $\sigma $is the Stephen-Boltzmann constant whose value is \[5.670 \times {10^{ - 8}}W{m^{ - 2}}{K^{ - 4}}\]
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main