
If the temperature of the hot body is raised by \[5\% \] the rate of heat radiated would be increased by how much percentage?
(A) \[12\% \]
(B) \[22\% \]
(C) \[32\% \]
(D) \[42\% \]
Answer
232.5k+ views
Hint: The heat energy radiated is directly proportional to the fourth power of the temperature of the black body. The percentage increase is the difference between the new value and the old value divided by the new value.
Formula used: In this solution we will be using the following formulae;
\[H = \sigma A{T^4}\] where \[H\] is the heat energy radiated, \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body.
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Complete Step-by-Step solution:
Generally, the heat energy radiated by a black body is directly related to the fourth power of the temperature of that black body as given by the Stefan’s law as
\[H = \sigma A{T^4}\] where \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body
Temperature increasing by 5 percent signifies the final temperature to be
\[T' = T + \dfrac{5}{{100}}T\] which by adding and simplifying gives,
\[T' = \dfrac{{21}}{{20}}T\]
\[ \Rightarrow \dfrac{{T'}}{T} = \dfrac{{21}}{{20}}\]
Percentage error can be defined as
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Hence, percentage increase in the heat energy radiated would be defined as
\[PI = \dfrac{{H' - H}}{H} \times 100\% \]
Where
\[H' = \sigma AT{'^4}\]
Hence,
\[\dfrac{{H'}}{H} = \dfrac{{\sigma AT{'^4}}}{{\sigma A{T^4}}} = \dfrac{{T{'^4}}}{{{T^4}}} = {\left( {\dfrac{{T'}}{T}} \right)^4}\]
By inserting known values, we have
\[\dfrac{{H'}}{H} = {\left( {\dfrac{{21}}{{20}}} \right)^4}\]
Hence, by multiplying both sides by \[H\], we get
\[H' = {\left( {\dfrac{{21}}{{20}}} \right)^4}H\]
Going back to the definition, and inserting the value above into it we have
\[PI = \dfrac{{{{\left( {\dfrac{{21}}{{20}}} \right)}^4}H - H}}{H} \times 100\% \]
Dividing numerator and denominator by \[H\], we get
\[PI = \left[ {{{\left( {\dfrac{{21}}{{20}}} \right)}^4} - 1} \right] \times 100\% \]
\[PI = \left[ {{{\left( {1.05} \right)}^4} - 1} \right] \times 100\% \]
Hence, finding the fourth power, we get
\[PI = \left[ {1.22 - 1} \right] \times 100\% \]
Computing the above relation, we get
\[PI = 22\% \]
Hence, the correct option is B.
Note: For clarity; you might have seen a text where heat radiated from a blackbody is written as
\[H = \varepsilon \sigma A{T^4}\] where \[\varepsilon \] is the emissivity of the body. This equation and the one above are identical, this is because for a black body, the emissivity is equal to 1, and hence can drop out of the equation. This equation is more generally used for heat radiated by any type of body.
Formula used: In this solution we will be using the following formulae;
\[H = \sigma A{T^4}\] where \[H\] is the heat energy radiated, \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body.
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Complete Step-by-Step solution:
Generally, the heat energy radiated by a black body is directly related to the fourth power of the temperature of that black body as given by the Stefan’s law as
\[H = \sigma A{T^4}\] where \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body
Temperature increasing by 5 percent signifies the final temperature to be
\[T' = T + \dfrac{5}{{100}}T\] which by adding and simplifying gives,
\[T' = \dfrac{{21}}{{20}}T\]
\[ \Rightarrow \dfrac{{T'}}{T} = \dfrac{{21}}{{20}}\]
Percentage error can be defined as
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Hence, percentage increase in the heat energy radiated would be defined as
\[PI = \dfrac{{H' - H}}{H} \times 100\% \]
Where
\[H' = \sigma AT{'^4}\]
Hence,
\[\dfrac{{H'}}{H} = \dfrac{{\sigma AT{'^4}}}{{\sigma A{T^4}}} = \dfrac{{T{'^4}}}{{{T^4}}} = {\left( {\dfrac{{T'}}{T}} \right)^4}\]
By inserting known values, we have
\[\dfrac{{H'}}{H} = {\left( {\dfrac{{21}}{{20}}} \right)^4}\]
Hence, by multiplying both sides by \[H\], we get
\[H' = {\left( {\dfrac{{21}}{{20}}} \right)^4}H\]
Going back to the definition, and inserting the value above into it we have
\[PI = \dfrac{{{{\left( {\dfrac{{21}}{{20}}} \right)}^4}H - H}}{H} \times 100\% \]
Dividing numerator and denominator by \[H\], we get
\[PI = \left[ {{{\left( {\dfrac{{21}}{{20}}} \right)}^4} - 1} \right] \times 100\% \]
\[PI = \left[ {{{\left( {1.05} \right)}^4} - 1} \right] \times 100\% \]
Hence, finding the fourth power, we get
\[PI = \left[ {1.22 - 1} \right] \times 100\% \]
Computing the above relation, we get
\[PI = 22\% \]
Hence, the correct option is B.
Note: For clarity; you might have seen a text where heat radiated from a blackbody is written as
\[H = \varepsilon \sigma A{T^4}\] where \[\varepsilon \] is the emissivity of the body. This equation and the one above are identical, this is because for a black body, the emissivity is equal to 1, and hence can drop out of the equation. This equation is more generally used for heat radiated by any type of body.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

