Answer
Verified
99.9k+ views
Hint: As we know that, we have to find the unit of time. According to the question we have energy (unit of work) and power. So as per given data we can use the following formula to find the unit of time. It can also be solved using dimensional formulas.
Complete step by step answer:
The data given in the question are
Energy = \[100J\]
Power = \[10KW\] = \[1000W\]
We have to find the unit of time in second,
\[{{Energy }} = {{ Power }} \times {{ Time}}\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Additional information:
Energy: is the capacity when we can do the work. The unit of energy is joule.
Power: it is the rate of doing the work. The unit of power is watt.
Work: the amount of energy transfer that occurs when a particle is moved to some distance by an external force. The unit of work is also joule.
We can also solve the question using dimension formulas as shown below.
Energy = \[100J\] \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power = \[10KW\] = \[1000W\] = \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{{{{M}}{{{L}}^2}{{{T}}^{ - 2}}}}{{{{M}}{{{L}}^2}{{{T}}^{ - 3}}}} = {{{T}}^1} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Note: The base formula used here is Energy = Power × Time.
If data of the time and power is given in the question then we can find energy by multiplying both power and time. Similarly, if we have the data of time and energy then we can find the power by dividing both time and energy. If we have the data of power and energy then we can get the value of time by dividing both power and energy.
The dimension formula for some physical quantities:
Force \[ = {{mass }} \times {{ acceleration = }}\left[ {{M}} \right] \times \left[ {{{L }}{{{T}}^{ - 2}}} \right] = \left[ {{{M L }}{{{T}}^{ - 2}}} \right]\]
Work \[ = {{force }} \times {{ distance = }}\left[ {{{M L }}{{{T}}^{ - 2}}} \right] \times \left[ {{L}} \right] = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Energy = work \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power \[ = \dfrac{{{{work}}}}{{{{time}}}} = \dfrac{{\left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]}}{{\left[ {{T}} \right]}} = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\].
Complete step by step answer:
The data given in the question are
Energy = \[100J\]
Power = \[10KW\] = \[1000W\]
We have to find the unit of time in second,
\[{{Energy }} = {{ Power }} \times {{ Time}}\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Additional information:
Energy: is the capacity when we can do the work. The unit of energy is joule.
Power: it is the rate of doing the work. The unit of power is watt.
Work: the amount of energy transfer that occurs when a particle is moved to some distance by an external force. The unit of work is also joule.
We can also solve the question using dimension formulas as shown below.
Energy = \[100J\] \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power = \[10KW\] = \[1000W\] = \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\]
\[{{Time = }}\dfrac{{{{Energy}}}}{{{{Power}}}} = \dfrac{{100}}{{1000}} = \dfrac{{{{M}}{{{L}}^2}{{{T}}^{ - 2}}}}{{{{M}}{{{L}}^2}{{{T}}^{ - 3}}}} = {{{T}}^1} = \dfrac{1}{{10}} = {10^{ - 1}}\].
Note: The base formula used here is Energy = Power × Time.
If data of the time and power is given in the question then we can find energy by multiplying both power and time. Similarly, if we have the data of time and energy then we can find the power by dividing both time and energy. If we have the data of power and energy then we can get the value of time by dividing both power and energy.
The dimension formula for some physical quantities:
Force \[ = {{mass }} \times {{ acceleration = }}\left[ {{M}} \right] \times \left[ {{{L }}{{{T}}^{ - 2}}} \right] = \left[ {{{M L }}{{{T}}^{ - 2}}} \right]\]
Work \[ = {{force }} \times {{ distance = }}\left[ {{{M L }}{{{T}}^{ - 2}}} \right] \times \left[ {{L}} \right] = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Energy = work \[ = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]\]
Power \[ = \dfrac{{{{work}}}}{{{{time}}}} = \dfrac{{\left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 2}}} \right]}}{{\left[ {{T}} \right]}} = \left[ {{{M }}{{{L}}^2}{{ }}{{{T}}^{ - 3}}} \right]\].
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main