
If we have the function $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$(x > 0) then the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ is
(a) ${{\log }_{e}}3$
(b) ${{\log }_{e}}2$
(c) ${{\log }_{e}}e$
(d) ${{\log }_{e}}1$
Answer
133.8k+ views
Hint: To solve this question, firstly we will find the value of composite function, $g(f(x))$ where $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$. Then, we will substitute the value of $g(f(x))$ in integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ and let the integral be equals to I. after that we will replace x by –x and add the both integral. After that, we will simplify the integral and using properties of log we will obtain the value of integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main Chemistry Question Paper with Answer Keys and Solutions

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Class 10 Hindi Sample Papers 2024-25
