
If we have the function $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$(x > 0) then the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ is
(a) ${{\log }_{e}}3$
(b) ${{\log }_{e}}2$
(c) ${{\log }_{e}}e$
(d) ${{\log }_{e}}1$
Answer
232.8k+ views
Hint: To solve this question, firstly we will find the value of composite function, $g(f(x))$ where $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$. Then, we will substitute the value of $g(f(x))$ in integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ and let the integral be equals to I. after that we will replace x by –x and add the both integral. After that, we will simplify the integral and using properties of log we will obtain the value of integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Recently Updated Pages
The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

