Answer
Verified
108.9k+ views
Hint: We start solving the problem by expanding the given summations of x, y and z. After expanding the summation, we can see that the sum resembles the sum of infinite geometric series. So, we use the sum of the infinite geometric series $\dfrac{p}{1-r}$ if $\left| r \right|<1$ to get the a, b and c in terms of x, y and z. We then use the information given about a, b and c in order to get the desired relation between x, y and z.
Complete step-by-step answer:
According to the problem, we are given $x=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}$, $y=\sum\limits_{n=0}^{\infty }{{{b}^{n}}}$, $z=\sum\limits_{n=0}^{\infty }{{{c}^{n}}}$ where a, b, c are in A.P and $\left| a \right|<1$, $\left| b \right|<1$, $\left| c \right|<1$. We need to find the progression that the numbers x, y, z are in.
Let us first solve for the values of x, y and z.
We have $x=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}$.
$\Rightarrow x={{a}^{0}}+{{a}^{1}}+{{a}^{2}}+{{a}^{3}}+..............\infty $.
$\Rightarrow x=1+a+{{a}^{2}}+{{a}^{3}}+..............\infty $ ---(1).
We can see that the right-hand side resembles the sum of infinite geometric series with the first term as 1 and the common ratio as ‘a’. According the problem we have $\left| a \right|<1$.
We know that the sum of the terms in infinite geometric series $p+pr+p{{r}^{2}}+p{{r}^{3}}+.......\infty $ is $\dfrac{p}{1-r}$ if $\left| r \right|<1$. We use this result in equation (1).
$\Rightarrow x=\dfrac{1}{1-a}$.
$\Rightarrow 1-a=\dfrac{1}{x}$ ---(2).
Now, we have $y=\sum\limits_{n=0}^{\infty }{{{b}^{n}}}$.
$\Rightarrow y={{b}^{0}}+{{b}^{1}}+{{b}^{2}}+{{b}^{3}}+..............\infty $.
$\Rightarrow y=1+b+{{b}^{2}}+{{b}^{3}}+..............\infty $ ---(3).
We can see that the right-hand side resembles the sum of infinite geometric series with first term as 1 and the common ratio as ‘b’. According the problem we have $\left| b \right|<1$.
We know that the sum of the terms in infinite geometric series $p+pr+p{{r}^{2}}+p{{r}^{3}}+.......\infty $ is $\dfrac{p}{1-r}$ if $\left| r \right|<1$. We use this result in equation (3).
$\Rightarrow y=\dfrac{1}{1-b}$.
$\Rightarrow 1-b=\dfrac{1}{y}$ ---(4).
Now, we have $z=\sum\limits_{n=0}^{\infty }{{{c}^{n}}}$.
$\Rightarrow z={{c}^{0}}+{{c}^{1}}+{{c}^{2}}+{{c}^{3}}+..............\infty $.
$\Rightarrow z=1+c+{{c}^{2}}+{{c}^{3}}+..............\infty $ ---(5).
We can see that the right-hand side resembles the sum of infinite geometric series with the first term as 1 and the common ratio as ‘c’. According the problem we have$\left| c \right|<1$.
We know that the sum of the terms in infinite geometric series $p+pr+p{{r}^{2}}+p{{r}^{3}}+.......\infty $ is $\dfrac{p}{1-r}$ if $\left| r \right|<1$. We use this result in equation (5).
$\Rightarrow z=\dfrac{1}{1-c}$.
$\Rightarrow 1-c=\dfrac{1}{z}$ ---(6).
According to the problem, we have a, b and c are in A.P (Arithmetic Progression). We know that if the given terms are in A.P (Arithmetic Progression) and all the terms are multiplied or divided or added or subtracted with any number, then the new terms we obtained will also be in A.P(Arithmetic Progression). Using this fact, we get the numbers –a, –b and –c are in A.P. Also, the numbers $1-a,1-b,1-c$ are also in A.P.
So, we have got 1 – a, 1 – b, 1 – c are in A.P which makes $\dfrac{1}{x}$, $\dfrac{1}{y}$, $\dfrac{1}{z}$ are in A.P.
We know that the inverse of $\dfrac{1}{x}$, $\dfrac{1}{y}$, $\dfrac{1}{z}$ are x, y, z.
We know that if p, q and r are in A.P, then $\dfrac{1}{p}$, $\dfrac{1}{q}$ and $\dfrac{1}{r}$ are in H.P (Harmonic Progression). Using this fact, we get that x, y, z are in H.P.
∴ We have found x, y, z are in H.P.
The correct option for the given problem is (a).
Note: We can prove that when the given terms are in A.P (Arithmetic Progression) and all the terms are multiplied or divided or added or subtracted with any number, then the new terms we obtained will also be in A.P(Arithmetic Progression) by taking example of any series that resembles A.P(Arithmetic Progression). We should not confuse the inverse of A.P as G.P. Similarly, we can expect problems in which x, y and z are in G.P.
Complete step-by-step answer:
According to the problem, we are given $x=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}$, $y=\sum\limits_{n=0}^{\infty }{{{b}^{n}}}$, $z=\sum\limits_{n=0}^{\infty }{{{c}^{n}}}$ where a, b, c are in A.P and $\left| a \right|<1$, $\left| b \right|<1$, $\left| c \right|<1$. We need to find the progression that the numbers x, y, z are in.
Let us first solve for the values of x, y and z.
We have $x=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}$.
$\Rightarrow x={{a}^{0}}+{{a}^{1}}+{{a}^{2}}+{{a}^{3}}+..............\infty $.
$\Rightarrow x=1+a+{{a}^{2}}+{{a}^{3}}+..............\infty $ ---(1).
We can see that the right-hand side resembles the sum of infinite geometric series with the first term as 1 and the common ratio as ‘a’. According the problem we have $\left| a \right|<1$.
We know that the sum of the terms in infinite geometric series $p+pr+p{{r}^{2}}+p{{r}^{3}}+.......\infty $ is $\dfrac{p}{1-r}$ if $\left| r \right|<1$. We use this result in equation (1).
$\Rightarrow x=\dfrac{1}{1-a}$.
$\Rightarrow 1-a=\dfrac{1}{x}$ ---(2).
Now, we have $y=\sum\limits_{n=0}^{\infty }{{{b}^{n}}}$.
$\Rightarrow y={{b}^{0}}+{{b}^{1}}+{{b}^{2}}+{{b}^{3}}+..............\infty $.
$\Rightarrow y=1+b+{{b}^{2}}+{{b}^{3}}+..............\infty $ ---(3).
We can see that the right-hand side resembles the sum of infinite geometric series with first term as 1 and the common ratio as ‘b’. According the problem we have $\left| b \right|<1$.
We know that the sum of the terms in infinite geometric series $p+pr+p{{r}^{2}}+p{{r}^{3}}+.......\infty $ is $\dfrac{p}{1-r}$ if $\left| r \right|<1$. We use this result in equation (3).
$\Rightarrow y=\dfrac{1}{1-b}$.
$\Rightarrow 1-b=\dfrac{1}{y}$ ---(4).
Now, we have $z=\sum\limits_{n=0}^{\infty }{{{c}^{n}}}$.
$\Rightarrow z={{c}^{0}}+{{c}^{1}}+{{c}^{2}}+{{c}^{3}}+..............\infty $.
$\Rightarrow z=1+c+{{c}^{2}}+{{c}^{3}}+..............\infty $ ---(5).
We can see that the right-hand side resembles the sum of infinite geometric series with the first term as 1 and the common ratio as ‘c’. According the problem we have$\left| c \right|<1$.
We know that the sum of the terms in infinite geometric series $p+pr+p{{r}^{2}}+p{{r}^{3}}+.......\infty $ is $\dfrac{p}{1-r}$ if $\left| r \right|<1$. We use this result in equation (5).
$\Rightarrow z=\dfrac{1}{1-c}$.
$\Rightarrow 1-c=\dfrac{1}{z}$ ---(6).
According to the problem, we have a, b and c are in A.P (Arithmetic Progression). We know that if the given terms are in A.P (Arithmetic Progression) and all the terms are multiplied or divided or added or subtracted with any number, then the new terms we obtained will also be in A.P(Arithmetic Progression). Using this fact, we get the numbers –a, –b and –c are in A.P. Also, the numbers $1-a,1-b,1-c$ are also in A.P.
So, we have got 1 – a, 1 – b, 1 – c are in A.P which makes $\dfrac{1}{x}$, $\dfrac{1}{y}$, $\dfrac{1}{z}$ are in A.P.
We know that the inverse of $\dfrac{1}{x}$, $\dfrac{1}{y}$, $\dfrac{1}{z}$ are x, y, z.
We know that if p, q and r are in A.P, then $\dfrac{1}{p}$, $\dfrac{1}{q}$ and $\dfrac{1}{r}$ are in H.P (Harmonic Progression). Using this fact, we get that x, y, z are in H.P.
∴ We have found x, y, z are in H.P.
The correct option for the given problem is (a).
Note: We can prove that when the given terms are in A.P (Arithmetic Progression) and all the terms are multiplied or divided or added or subtracted with any number, then the new terms we obtained will also be in A.P(Arithmetic Progression) by taking example of any series that resembles A.P(Arithmetic Progression). We should not confuse the inverse of A.P as G.P. Similarly, we can expect problems in which x, y and z are in G.P.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main