Answer
Verified
111.9k+ views
Hint: The kinetic energy (KE) of an object is the energy it possesses because of its motion. It is defined as the work necessary to accelerate from rest to the specified velocity of a body of a given mass. Having obtained this energy through its acceleration, until its speed varies, the body retains this kinetic energy.
Complete step by step solution:
Kinetic energy-energy type which is caused by an entity or a particle's movement. The mass accelerates and thereby gains kinetic energy if work is performed on a mass with the help of a net force. Kinetic energy is one of the properties of a moving object or particle and depends on its movement as well as mass. The movement type can be translation (or movement along a route between places), rotation around an axis, vibration or some mixture of motions.
A body's translational kinetic energy is equal to half its mass $m$, and its velocity, $v$ or $\dfrac {1} {2} m {v^2}.$
This formula is only valid for low to relatively high speeds; it gives too small values for very high speed particles. As an object's speed exceeds light, it changes its mass and it must be subjected to the rules of relative efficiency. Relativistic kinetic energy is analogous to an increase in particle mass in the remainder compounded by the square of light velocity.
The bullet emerges with only $10\% $ of its kinetic energy.
Therefore,
$\dfrac {1} {2} m {v^2} = 0.1(K.E) $
Where, $m$ is mass, $v$ is velocity and $K.E$ is kinetic energy.
$ = 0.1 \times \dfrac{1}{2}m{u^2}$
It is given that $m = 50g$or $m = 50 \times {10^ {- 3}} kg$
$v = 200m{s^ {- 1}} $
Therefore, from the above equations,
$\dfrac {1} {2} \times 50 \times {10^ {- 3}} \times {u^2} = 0.1 \times [\dfrac{1}{2} \times 50 \times {10^ {- 3}} \times {20^2}] $
${u^2} = 0.1 \times {200^2} $
$u = 20\sqrt {10} m{s^ {- 1}} $
The emergence speed of bullet is $20\sqrt {10} m{s^ {- 1}}.$
Note: The cumulative kinetic energy of a body or mechanism equals the sum of the kinetic energies of each movement form.
Complete step by step solution:
Kinetic energy-energy type which is caused by an entity or a particle's movement. The mass accelerates and thereby gains kinetic energy if work is performed on a mass with the help of a net force. Kinetic energy is one of the properties of a moving object or particle and depends on its movement as well as mass. The movement type can be translation (or movement along a route between places), rotation around an axis, vibration or some mixture of motions.
A body's translational kinetic energy is equal to half its mass $m$, and its velocity, $v$ or $\dfrac {1} {2} m {v^2}.$
This formula is only valid for low to relatively high speeds; it gives too small values for very high speed particles. As an object's speed exceeds light, it changes its mass and it must be subjected to the rules of relative efficiency. Relativistic kinetic energy is analogous to an increase in particle mass in the remainder compounded by the square of light velocity.
The bullet emerges with only $10\% $ of its kinetic energy.
Therefore,
$\dfrac {1} {2} m {v^2} = 0.1(K.E) $
Where, $m$ is mass, $v$ is velocity and $K.E$ is kinetic energy.
$ = 0.1 \times \dfrac{1}{2}m{u^2}$
It is given that $m = 50g$or $m = 50 \times {10^ {- 3}} kg$
$v = 200m{s^ {- 1}} $
Therefore, from the above equations,
$\dfrac {1} {2} \times 50 \times {10^ {- 3}} \times {u^2} = 0.1 \times [\dfrac{1}{2} \times 50 \times {10^ {- 3}} \times {20^2}] $
${u^2} = 0.1 \times {200^2} $
$u = 20\sqrt {10} m{s^ {- 1}} $
The emergence speed of bullet is $20\sqrt {10} m{s^ {- 1}}.$
Note: The cumulative kinetic energy of a body or mechanism equals the sum of the kinetic energies of each movement form.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line