
In a mixed grouping of identical cells, $5$ rows are connected in parallel by each row contains $10$ cells. This combination sends a current ${{i}}$ through an external resistance of ${{20 \Omega }}$. If the emf and internal resistance of each cell is ${{1}}{{.5 V}}$ and $1{{ }}\Omega $, respectively then the value of ${{i}}$ is:
A) 0.14
B) 0.25
C) 0.75
D) 0.68
Answer
131.4k+ views
Hint: When n cells of same emf are connected in series combination the value of current, ${{I = }}\dfrac{{{E}}}{{{r}}}$. When n cells of same emf are connected in parallel combination the value of current, ${{I = }}\dfrac{{{E}}}{{{{R + }}\dfrac{{{r}}}{{{n}}}}}$. Parallel combination of mix grouping of cells, the value of current is given by
${{I = }}\dfrac{{{{nE}}}}{{{{R + }}\dfrac{{{{nr}}}}{{{m}}}}}$.
Complete step by step solution:
Given: The number of cells in a row, ${{n = 10}}$
The number of rows, ${{m = 5}}$
Emf of each cell, ${{E = 1}}{{.5 V}}$
Internal resistance of each cell, ${{r = 1 \Omega }}$
Electric current is defined as the rate of flow of charge through a conductor in any cross sectional area in a definite direction. SI unit of electric current is ampere represented by A.
Emf is defined as the maximum potential difference between the terminal of the cell when no current is drawn from the cell or the circuit is open. SI unit of emf is voltage represented by V.
Internal resistance is the resistance offered by the electrolyte of the cells to the flow of charge. SI unit of internal resistance is ohms represented by $\Omega $.
Formula for current in mix grouping of cells is given by
$\Rightarrow {{i = }}\dfrac{{{{nE}}}}{{{{R + }}\dfrac{{{{nr}}}}{{{m}}}}}...{{(i)}}$
Where total resistance ${{ = R + }}\dfrac{{{{nr}}}}{{{m}}}$
Now substituting the given values in formula (i), we get
$
\Rightarrow {{i = }}\dfrac{{{{10 \times 15}}}}{{{{20 + }}\dfrac{{{{10 \times 1}}}}{{{5}}}}} \\
\Rightarrow {{i = }}\dfrac{{{{55}}}}{{{{22}}}} \\
\therefore {{i = 0}}{{.68 A}} $
Note: When the cells are joined in a mix group, then to get the maximum current the load resistance must be equal to the internal resistance of the cell. The value of emf of the cells connected in parallel combination remains the same i.e. ${{{E}}_{{{eqv}}}}{{ = E}}$.
For example: If 2 cells are connected in parallel or 100 cells connected in parallel combination the value of equivalent emf remains the same in both the cases.
${{I = }}\dfrac{{{{nE}}}}{{{{R + }}\dfrac{{{{nr}}}}{{{m}}}}}$.
Complete step by step solution:
Given: The number of cells in a row, ${{n = 10}}$
The number of rows, ${{m = 5}}$
Emf of each cell, ${{E = 1}}{{.5 V}}$
Internal resistance of each cell, ${{r = 1 \Omega }}$
Electric current is defined as the rate of flow of charge through a conductor in any cross sectional area in a definite direction. SI unit of electric current is ampere represented by A.
Emf is defined as the maximum potential difference between the terminal of the cell when no current is drawn from the cell or the circuit is open. SI unit of emf is voltage represented by V.
Internal resistance is the resistance offered by the electrolyte of the cells to the flow of charge. SI unit of internal resistance is ohms represented by $\Omega $.
Formula for current in mix grouping of cells is given by
$\Rightarrow {{i = }}\dfrac{{{{nE}}}}{{{{R + }}\dfrac{{{{nr}}}}{{{m}}}}}...{{(i)}}$
Where total resistance ${{ = R + }}\dfrac{{{{nr}}}}{{{m}}}$
Now substituting the given values in formula (i), we get
$
\Rightarrow {{i = }}\dfrac{{{{10 \times 15}}}}{{{{20 + }}\dfrac{{{{10 \times 1}}}}{{{5}}}}} \\
\Rightarrow {{i = }}\dfrac{{{{55}}}}{{{{22}}}} \\
\therefore {{i = 0}}{{.68 A}} $
Note: When the cells are joined in a mix group, then to get the maximum current the load resistance must be equal to the internal resistance of the cell. The value of emf of the cells connected in parallel combination remains the same i.e. ${{{E}}_{{{eqv}}}}{{ = E}}$.
For example: If 2 cells are connected in parallel or 100 cells connected in parallel combination the value of equivalent emf remains the same in both the cases.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
