Answer
Verified
99.9k+ views
Hint: The particle of the medium will oscillate along the vertical direction as the plane progressive harmonic wave travels. For the particle we use the sine wave function of displacement to find the velocity or displacement. The maximum velocity of the cork will be at the mean equilibrium position.
Formula used:
\[v = \nu \lambda \]
where v is the wave speed, \[\nu \] is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
\[{v_{\max }} = \omega A\]
where \[{v_{\max }}\] is the maximum speed of simple harmonic motion, \[\omega \] is the angular frequency and A is the amplitude of the oscillation.
Complete step by step solution:
Let the particle speed is \[{v_p}\]and the wave speed is \[{v_w}\]. The general equation of the progressive wave is given as,
\[y\left( {x,t} \right) = A\sin \left( {\omega t - kx} \right)\]
Here, A is the amplitude of the vertical displacement, \[\omega \] is the angular frequency of the wave and k is the wave number of the wave.
The wave speed is given as,
\[{v_w} = \dfrac{\omega }{K}\]
Here, K is the wave number and it is related to the wavelength as,
\[K = \dfrac{{2\pi }}{\lambda } \ldots \left( i \right)\]
The particle speed is given as,
\[{v_p} = \omega \sqrt {{A^2} - {y^2}} \]
So, the maximum speed of the particle is when it is at mean position, i.e. the displacement is zero.
\[{v_{p\left( {\max } \right)}} = \omega A\]
As per the question the particle speed is less than the wave speed,
\[{v_{p\left( {\max } \right)}} < {v_w}\]
\[\Rightarrow\omega A < \dfrac{\omega }{K}\]
\[\Rightarrow A < \dfrac{1}{K}\]
From the first relation,
\[A < \dfrac{\lambda }{{2\pi }}\]
Hence, if the amplitude is less than \[\dfrac{\lambda }{{2\pi }}\] then the particle speed is always less than the wave speed.
Therefore, the correct option is A.
Note: We should be very clear that when a progressive wave is traveling through a medium then the particle of the medium oscillates about the mean position with varying speed which depends on the displacement from the mean position and the wave speed is constant.
Formula used:
\[v = \nu \lambda \]
where v is the wave speed, \[\nu \] is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
\[{v_{\max }} = \omega A\]
where \[{v_{\max }}\] is the maximum speed of simple harmonic motion, \[\omega \] is the angular frequency and A is the amplitude of the oscillation.
Complete step by step solution:
Let the particle speed is \[{v_p}\]and the wave speed is \[{v_w}\]. The general equation of the progressive wave is given as,
\[y\left( {x,t} \right) = A\sin \left( {\omega t - kx} \right)\]
Here, A is the amplitude of the vertical displacement, \[\omega \] is the angular frequency of the wave and k is the wave number of the wave.
The wave speed is given as,
\[{v_w} = \dfrac{\omega }{K}\]
Here, K is the wave number and it is related to the wavelength as,
\[K = \dfrac{{2\pi }}{\lambda } \ldots \left( i \right)\]
The particle speed is given as,
\[{v_p} = \omega \sqrt {{A^2} - {y^2}} \]
So, the maximum speed of the particle is when it is at mean position, i.e. the displacement is zero.
\[{v_{p\left( {\max } \right)}} = \omega A\]
As per the question the particle speed is less than the wave speed,
\[{v_{p\left( {\max } \right)}} < {v_w}\]
\[\Rightarrow\omega A < \dfrac{\omega }{K}\]
\[\Rightarrow A < \dfrac{1}{K}\]
From the first relation,
\[A < \dfrac{\lambda }{{2\pi }}\]
Hence, if the amplitude is less than \[\dfrac{\lambda }{{2\pi }}\] then the particle speed is always less than the wave speed.
Therefore, the correct option is A.
Note: We should be very clear that when a progressive wave is traveling through a medium then the particle of the medium oscillates about the mean position with varying speed which depends on the displacement from the mean position and the wave speed is constant.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main