Answer
Verified
109.2k+ views
Hint: To solve this question, we need to obtain the emf and the frequency of the source. Then putting them in the formulae of the voltages across the three elements, we will get the required values.
Complete step-by-step solution
Let ${V_R}'$, ${V_R}'$, and ${V_R}'$ be the respective required voltages on the resistor, inductor and the capacitor.
Let $i$ be the current in the circuit.
We know that the net emf of the source in a series $R - L - C$circuit is given by
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
According to the question, ${V_R} = {V_L} = {V_C} = 20{\text{V}}$
So, $V = \sqrt {{{20}^2} + {{\left( {20 - 20} \right)}^2}} $
$V = 20{\text{V}}$
Therefore, the source emf is of $20{\text{V}}$
Now, as ${V_L} = {V_C}$
Writing the voltages in terms of the impedances, we have
$i{X_L} = i{X_C}$
Cancelling $i$ from both the sides
${X_L} = {X_C}$
As we know, ${X_L} = \omega L$ and ${X_C} = \dfrac{1}{{\omega C}}$
So, $\omega L = \dfrac{1}{{\omega C}}$
Or ${\omega ^2} = \dfrac{1}{{LC}}$
Taking square root, we get
$\omega = \dfrac{1}{{\sqrt {LC} }}$
Therefore, the source has a frequency equal to the resonant frequency.
We know that in the resonance condition, the entire source voltage appears on the resistance.
So, the voltage on the resistor is always equal to the net emf of the source and is independent of the value of the resistance.
Therefore, doubling the value of the resistance does not change its voltage.
Hence, ${V_R}' = 20V$
But, according to the ohm’s law, we have
${V_R}' = i'R'$
As ${V_R}' = {V_R}$, and $R' = 2R$, we have
${V_R} = i'(2R)$
Substituting ${V_R} = iR$
$iR = 2i'R$
$i' = \dfrac{i}{2}$
So, the current is reduced to half.
Now, we have
${V_L}' = i'{X_L}$
$\Rightarrow {V_L}' = \dfrac{i}{2}{X_L}$
Substituting ${V_L} = i{X_L}$, we get
$\Rightarrow {V_L}' = \dfrac{{{V_L}}}{2}$
$\Rightarrow {V_L}' = \dfrac{{20}}{2} = 10{\text{V}}$
For resonance, \[{V_C}' = {V_L}' = 10{\text{V}}\]
Thus, the P.D. across $R$, $L$ and $C$ are respectively $20{\text{V, 10V, 10V}}$
Hence, the correct answer is option A.
Note: Do not try to obtain the value of net source emf by the algebraic addition of the voltages. Always remember that the voltages in a series $R - L - C$ circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of the three voltages given.
Complete step-by-step solution
Let ${V_R}'$, ${V_R}'$, and ${V_R}'$ be the respective required voltages on the resistor, inductor and the capacitor.
Let $i$ be the current in the circuit.
We know that the net emf of the source in a series $R - L - C$circuit is given by
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
According to the question, ${V_R} = {V_L} = {V_C} = 20{\text{V}}$
So, $V = \sqrt {{{20}^2} + {{\left( {20 - 20} \right)}^2}} $
$V = 20{\text{V}}$
Therefore, the source emf is of $20{\text{V}}$
Now, as ${V_L} = {V_C}$
Writing the voltages in terms of the impedances, we have
$i{X_L} = i{X_C}$
Cancelling $i$ from both the sides
${X_L} = {X_C}$
As we know, ${X_L} = \omega L$ and ${X_C} = \dfrac{1}{{\omega C}}$
So, $\omega L = \dfrac{1}{{\omega C}}$
Or ${\omega ^2} = \dfrac{1}{{LC}}$
Taking square root, we get
$\omega = \dfrac{1}{{\sqrt {LC} }}$
Therefore, the source has a frequency equal to the resonant frequency.
We know that in the resonance condition, the entire source voltage appears on the resistance.
So, the voltage on the resistor is always equal to the net emf of the source and is independent of the value of the resistance.
Therefore, doubling the value of the resistance does not change its voltage.
Hence, ${V_R}' = 20V$
But, according to the ohm’s law, we have
${V_R}' = i'R'$
As ${V_R}' = {V_R}$, and $R' = 2R$, we have
${V_R} = i'(2R)$
Substituting ${V_R} = iR$
$iR = 2i'R$
$i' = \dfrac{i}{2}$
So, the current is reduced to half.
Now, we have
${V_L}' = i'{X_L}$
$\Rightarrow {V_L}' = \dfrac{i}{2}{X_L}$
Substituting ${V_L} = i{X_L}$, we get
$\Rightarrow {V_L}' = \dfrac{{{V_L}}}{2}$
$\Rightarrow {V_L}' = \dfrac{{20}}{2} = 10{\text{V}}$
For resonance, \[{V_C}' = {V_L}' = 10{\text{V}}\]
Thus, the P.D. across $R$, $L$ and $C$ are respectively $20{\text{V, 10V, 10V}}$
Hence, the correct answer is option A.
Note: Do not try to obtain the value of net source emf by the algebraic addition of the voltages. Always remember that the voltages in a series $R - L - C$ circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of the three voltages given.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main