
In a resonance tube experiment, the first two resonances are observed at length $10.5cm$ and $29.5cm$. The third resonance is observed at the length
(A) $47.5cm$
(B) $58.5cm$
(C) $48.5cm$
(D) $82.8cm$
Answer
140.4k+ views
Hint We know that for a resonance tube experiment, the difference between successive resonance is equal to half the wavelength. Hence, we will use this concept to calculate the third resonance.
i.e. \[{\lambda _n} - {\lambda _{n - 1}} = \dfrac{\lambda }{2}......(1)\]
where,
${\lambda _n}$ is length of nth resonance.
$\lambda $ is wavelength.
Complete Step by step solution
Given: length of 1st resonance = ${\lambda _1} = 10.5cm$
Length of 2nd resonance = ${\lambda _2} = 29.5cm$
Now difference between first and second resonance is,
$\begin{array}{*{20}{c}}
{{\lambda _2} - {\lambda _1}}& = &{\dfrac{\lambda }{2}} \\
{29.5 - 10.5}& = &{\dfrac{\lambda }{2}} \\
\lambda & = &{38cm}
\end{array}$
Now we have to calculate third resonance, hence using equation (1) we get
$
{\lambda _3} - {\lambda _2} = \dfrac{\lambda }{2} \\
{\lambda _3} = {\lambda _2} + \dfrac{\lambda }{2} \\
{\lambda _3} = 29.5cm + 19cm \\
{\lambda _3} = 48.5cm \\
$
Hence the length of third resonance is $48.5cm$.
Hence option C is correct.
Note In resonance tube experiment, resonance is obtained when the first object is vibrating at the natural frequency of the second object. When this occurs, the fork forces the resonance tube to vibrate at its own frequency and the resonance is achieved
i.e. \[{\lambda _n} - {\lambda _{n - 1}} = \dfrac{\lambda }{2}......(1)\]
where,
${\lambda _n}$ is length of nth resonance.
$\lambda $ is wavelength.
Complete Step by step solution
Given: length of 1st resonance = ${\lambda _1} = 10.5cm$
Length of 2nd resonance = ${\lambda _2} = 29.5cm$
Now difference between first and second resonance is,
$\begin{array}{*{20}{c}}
{{\lambda _2} - {\lambda _1}}& = &{\dfrac{\lambda }{2}} \\
{29.5 - 10.5}& = &{\dfrac{\lambda }{2}} \\
\lambda & = &{38cm}
\end{array}$
Now we have to calculate third resonance, hence using equation (1) we get
$
{\lambda _3} - {\lambda _2} = \dfrac{\lambda }{2} \\
{\lambda _3} = {\lambda _2} + \dfrac{\lambda }{2} \\
{\lambda _3} = 29.5cm + 19cm \\
{\lambda _3} = 48.5cm \\
$
Hence the length of third resonance is $48.5cm$.
Hence option C is correct.
Note In resonance tube experiment, resonance is obtained when the first object is vibrating at the natural frequency of the second object. When this occurs, the fork forces the resonance tube to vibrate at its own frequency and the resonance is achieved
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
