
In an AC generator increasing no. of turns in coil:
A) Decreases the EMF
B) EMF remains the same
C) Increases the EMF
D) EMF becomes zero
Answer
232.8k+ views
Hint: AC generator works based on Faraday’s law of electromagnetic induction. A conductor placed in a varying magnetic field will induce an electromotive force in the conductor. Another way is to keep the magnetic field stationary and move the conductor. An EMF is induced due to the magnetic field and the induced EMF will depend upon the no. of turns.
Formula used:
$emf = NAB\omega \sin \omega t$
Where emf is the induced EMF of the circuit, $N$ is the number of turns in the coil, $A$ is the area of the loop, $B$ is the uniform magnetic field in which the coil is placed and $\omega $ is the angular velocity of the rotor
Complete step by step solution:
AC generators work based on the principle of Faraday’s law.
According to which,
An emf is induced by the electric generators by rotating a coil in the magnetic field. When the generator coil rotates in a magnetic field, the change in the magnetic flux will induce a current in the coil.
The expression for the induced emf is given by,
$emf = NAB\omega \sin \omega t$
In this equation, $N$ stands for the number of turns in the coil. From this equation, it is clear that the EMF will increase with the increase in no of turns of the coil.
The correct answer is option (C), Increases the EMF.
Note: Other factors that influence the induced emf is the strength of the magnetic field, the Area of the rotating loop, and the angular velocity of the rotating loop. The maximum emf is obtained when $emf = NAB\omega (\because \sin \omega t = 1).$
Formula used:
$emf = NAB\omega \sin \omega t$
Where emf is the induced EMF of the circuit, $N$ is the number of turns in the coil, $A$ is the area of the loop, $B$ is the uniform magnetic field in which the coil is placed and $\omega $ is the angular velocity of the rotor
Complete step by step solution:
AC generators work based on the principle of Faraday’s law.
According to which,
An emf is induced by the electric generators by rotating a coil in the magnetic field. When the generator coil rotates in a magnetic field, the change in the magnetic flux will induce a current in the coil.
The expression for the induced emf is given by,
$emf = NAB\omega \sin \omega t$
In this equation, $N$ stands for the number of turns in the coil. From this equation, it is clear that the EMF will increase with the increase in no of turns of the coil.
The correct answer is option (C), Increases the EMF.
Note: Other factors that influence the induced emf is the strength of the magnetic field, the Area of the rotating loop, and the angular velocity of the rotating loop. The maximum emf is obtained when $emf = NAB\omega (\because \sin \omega t = 1).$
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

