Answer
Verified
109.2k+ views
Hint: Let us know about a vibration magnetometer in brief before proceeding with the solution. A vibration magnetometer is used for the comparison of magnetic moments and magnetic fields. This device works on the principle that whenever a freely suspended magnet in a uniform magnetic field is disturbed from its equilibrium position, it starts vibrating about the mean position. In short, we can say vibration magnetometers work on the principle of torque acting on the bar magnet.
Formula Used:
\[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\], \[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
Complete step by step solution:
For a vibration magnetometer, we have \[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\] where \[m\] is the magnetic moment of the magnet, \[{{B}_{H}}\] is the intensity of the horizontal component of the earth’s magnetic field and \[T\] is the period of oscillation or the vibration period.
From the equation of the working principle of a magnetometer, we have
\[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\] where \[d\] is the distance of the magnet from the magnetometer and \[{{\mu }_{0}}\] is the permeability constant
Multiplying the two equations written above, we get \[{{m}^{2}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\times \dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
The values of both the terms have been provided to us in the question. Substituting the values, \[4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\]\[=36\times {{10}^{-4}}\], and \[\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]\[=\dfrac{{{10}^{8}}}{36}\], we get,
\[\begin{align}
& {{m}^{2}}=36\times {{10}^{-4}}\times \dfrac{{{10}^{8}}}{36} \\
& \Rightarrow {{m}^{2}}={{10}^{4}} \\
& \Rightarrow m=100A{{m}^{2}} \\
\end{align}\]
The magnetic moment of the magnet is \[100A{{m}^{2}}\] and hence option (B) is the correct answer.
Note: We have two independent equations that both relate the magnetic moment of the magnet with the horizontal component of the earth’s magnetic field. Most students make the mistake of using only the equation of the working principle of the magnetometer and transposing the terms of the equation to try and find the unknown quantity and end up complexing the problem. We obtained our solution through a simple product, so you have to keep your heads open.
Formula Used:
\[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\], \[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
Complete step by step solution:
For a vibration magnetometer, we have \[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\] where \[m\] is the magnetic moment of the magnet, \[{{B}_{H}}\] is the intensity of the horizontal component of the earth’s magnetic field and \[T\] is the period of oscillation or the vibration period.
From the equation of the working principle of a magnetometer, we have
\[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\] where \[d\] is the distance of the magnet from the magnetometer and \[{{\mu }_{0}}\] is the permeability constant
Multiplying the two equations written above, we get \[{{m}^{2}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\times \dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
The values of both the terms have been provided to us in the question. Substituting the values, \[4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\]\[=36\times {{10}^{-4}}\], and \[\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]\[=\dfrac{{{10}^{8}}}{36}\], we get,
\[\begin{align}
& {{m}^{2}}=36\times {{10}^{-4}}\times \dfrac{{{10}^{8}}}{36} \\
& \Rightarrow {{m}^{2}}={{10}^{4}} \\
& \Rightarrow m=100A{{m}^{2}} \\
\end{align}\]
The magnetic moment of the magnet is \[100A{{m}^{2}}\] and hence option (B) is the correct answer.
Note: We have two independent equations that both relate the magnetic moment of the magnet with the horizontal component of the earth’s magnetic field. Most students make the mistake of using only the equation of the working principle of the magnetometer and transposing the terms of the equation to try and find the unknown quantity and end up complexing the problem. We obtained our solution through a simple product, so you have to keep your heads open.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main