In an LCR circuit having \[L=8H\], \[C=0.5\mu F\] and \[R=100\Omega \] in series, the resonance frequency in \[rad/s\] is?
A) \[600\]
B) \[200\]
C) \[\dfrac{250}{\pi }\]
D) \[500\]
Answer
Verified
115.5k+ views
Hint: Before finding the answer to the given question, we should be able to answer what is resonance frequency. The resonant frequency is the oscillation of a system at its natural or unforced resonance. Resonance occurs when a system can store and easily transfer energy between different storage modes, such as Kinetic energy or Potential energy as you would find with a simple pendulum. Resonance is witnessed in objects that are in equilibrium with acting forces and could keep vibrating for a long time under perfect conditions.
Formula Used:
\[f=\dfrac{1}{2\pi \sqrt{LC}}\]
Complete step by step solution:
We have been given the value of the inductance of the inductor, the value of the capacitance of the capacitor and the value of the resistance in the circuit.
Capacitance of the Capacitor \[(C)=0.5\mu F=0.5\times {{10}^{-6}}F\] since \[1\mu F={{10}^{-6}}F\].
The value of inductance of the inductor \[(L)=8H\].
From the formula to calculate the resonance frequency of the circuit, we have \[f=\dfrac{1}{2\pi \sqrt{LC}}\] where \[f\] is the resonant frequency, \[L\] is the inductance value and \[C\] is the capacitance value.
Substituting the values, we get
\[\begin{align}
& f=\dfrac{1}{2\pi \sqrt{8\times 0.5\times {{10}^{-6}}}} \\
& \Rightarrow f=\dfrac{{{10}^{3}}}{4\pi } \\
& \Rightarrow f=\dfrac{250}{\pi }rad/s \\
\end{align}\]
Hence we can now say that option (C) is the correct answer to the given question.
Note: We must always keep in mind that only the inductor and the capacitor are responsible for resonance in a circuit. Therefore, even though we were given the value of resistance present in the circuit, we did not make any use of it. Also, we had been asked the value of the resonant frequency in \[rad/s\], so we did not need to convert but if we had been asked the answer in any other unit, a conversion would be elemental. So keep an eye out for the unit in which the answer is to be given.
Formula Used:
\[f=\dfrac{1}{2\pi \sqrt{LC}}\]
Complete step by step solution:
We have been given the value of the inductance of the inductor, the value of the capacitance of the capacitor and the value of the resistance in the circuit.
Capacitance of the Capacitor \[(C)=0.5\mu F=0.5\times {{10}^{-6}}F\] since \[1\mu F={{10}^{-6}}F\].
The value of inductance of the inductor \[(L)=8H\].
From the formula to calculate the resonance frequency of the circuit, we have \[f=\dfrac{1}{2\pi \sqrt{LC}}\] where \[f\] is the resonant frequency, \[L\] is the inductance value and \[C\] is the capacitance value.
Substituting the values, we get
\[\begin{align}
& f=\dfrac{1}{2\pi \sqrt{8\times 0.5\times {{10}^{-6}}}} \\
& \Rightarrow f=\dfrac{{{10}^{3}}}{4\pi } \\
& \Rightarrow f=\dfrac{250}{\pi }rad/s \\
\end{align}\]
Hence we can now say that option (C) is the correct answer to the given question.
Note: We must always keep in mind that only the inductor and the capacitor are responsible for resonance in a circuit. Therefore, even though we were given the value of resistance present in the circuit, we did not make any use of it. Also, we had been asked the value of the resonant frequency in \[rad/s\], so we did not need to convert but if we had been asked the answer in any other unit, a conversion would be elemental. So keep an eye out for the unit in which the answer is to be given.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics