
In an X-ray tube, electrons bombarding the target produce an X-ray of minimum wavelength $1\mathop {\text{A}}\limits^o $. The energy of the bombarding electron will be:
(A) 100 eV
(B) 14375 eV
(C) 12000 eV
(D) 12375 eV
Answer
232.8k+ views
HintHere the energy of the electron bombarding on the target will be given by the energy of the X-ray photons which are released using the wavelength of the X-ray given in the question from the formula $E = \dfrac{{hc}}{\lambda }$
Formula Used
In this solution we will be using the following formula,
$E = h\upsilon $
where $h$ is the Planck’s constant
$E$ is the energy and $\upsilon $ is the frequency of the wave
and $\upsilon = \dfrac{c}{\lambda }$ where $\lambda $ is the wavelength of the wave and $c$ is the velocity of light.
Complete step-by-step answer:
When an electron bombards the target, the kinetic energy of the electron transfers in the interaction and a X-ray with the highest possible energy is released.
So the energy of the electron will be the energy of the X-ray. Now from the energy of the X-ray, we can find its frequency by the formula
$E = h\upsilon $ where $\upsilon $ is the frequency of the wave
The frequency can be written as, $\upsilon = \dfrac{c}{\lambda }$
So substituting we get,
$E = \dfrac{{hc}}{\lambda }$
From the question we have, the wavelength as $\lambda = 1\mathop {\text{A}}\limits^o = 1 \times {10^{ - 10}}m$
and the value of the speed of light and the Planck’s constant are,
$c = 3 \times {10^8}m/s$ and $h = 6.6 \times {10^{ - 34}}{m^2}kg/s$
So substituting all the values we get
$E = \dfrac{{6.6 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1 \times {{10}^{ - 10}}}}$
On doing the calculation we get,
$E = 1.98 \times {10^{ - 15}}J$
But the options are given in electron-volt. So to convert, we divide the value obtained by a factor of $1.6 \times {10^{ - 19}}$. Hence we get,
$E = \dfrac{{1.98 \times {{10}^{ - 15}}}}{{1.6 \times {{10}^{ - 19}}}}eV$
On doing the division we get,
$E = 12375eV$
So the correct answer is option D.
Note: In an X-ray tube, current is passed through the tungsten filament which enables it to get heated up and releases electrons by thermionic emission. These electrons bombard the target which results in conversion of energy into heat and X-ray photons.
Formula Used
In this solution we will be using the following formula,
$E = h\upsilon $
where $h$ is the Planck’s constant
$E$ is the energy and $\upsilon $ is the frequency of the wave
and $\upsilon = \dfrac{c}{\lambda }$ where $\lambda $ is the wavelength of the wave and $c$ is the velocity of light.
Complete step-by-step answer:
When an electron bombards the target, the kinetic energy of the electron transfers in the interaction and a X-ray with the highest possible energy is released.
So the energy of the electron will be the energy of the X-ray. Now from the energy of the X-ray, we can find its frequency by the formula
$E = h\upsilon $ where $\upsilon $ is the frequency of the wave
The frequency can be written as, $\upsilon = \dfrac{c}{\lambda }$
So substituting we get,
$E = \dfrac{{hc}}{\lambda }$
From the question we have, the wavelength as $\lambda = 1\mathop {\text{A}}\limits^o = 1 \times {10^{ - 10}}m$
and the value of the speed of light and the Planck’s constant are,
$c = 3 \times {10^8}m/s$ and $h = 6.6 \times {10^{ - 34}}{m^2}kg/s$
So substituting all the values we get
$E = \dfrac{{6.6 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1 \times {{10}^{ - 10}}}}$
On doing the calculation we get,
$E = 1.98 \times {10^{ - 15}}J$
But the options are given in electron-volt. So to convert, we divide the value obtained by a factor of $1.6 \times {10^{ - 19}}$. Hence we get,
$E = \dfrac{{1.98 \times {{10}^{ - 15}}}}{{1.6 \times {{10}^{ - 19}}}}eV$
On doing the division we get,
$E = 12375eV$
So the correct answer is option D.
Note: In an X-ray tube, current is passed through the tungsten filament which enables it to get heated up and releases electrons by thermionic emission. These electrons bombard the target which results in conversion of energy into heat and X-ray photons.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

