In Bohr’s model of the hydrogen atom, the radius of the first orbit of an electron is ${r_0}$. Then the radius of the third orbit is?
A) $\dfrac{{{r_0}}}{9}$
B) ${r_0}$
C) $3{r_0}$
D) $9{r_0}$
Answer
Verified
116.4k+ views
Hint: Bohr proposed that electrons orbited the nucleus in specific orbits or shells with a fixed radius. According to Bohr’s model, an electron would absorb energy in the form of photons to get excited to a higher energy level. The Bohr model derives a radius for the nth excited state of hydrogen-like atoms.
Formula Used:
We will be using the formula of Radius of the nth orbit of an electron. It is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$.
Given: In Bohr’s model of the hydrogen atom, the radius of the first orbit is ${r_0}$ and to find the radius of the third orbit.
Complete step by step solution:
The radius of the nth orbit of an electron is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$
Where, ${r_n}$- Radius of the nth Orbit
${r_0}$- Radius of the first Orbit
Z - Atomic number
\[n\] - Number of orbits
For the hydrogen atom, the Atomic number $Z = 1$
$ \Rightarrow {r_n} = {r_0}{n^2}$
So, for the third orbit $n = 3$
Thus the radius of the third orbit ${r_3} = {r_0} \times {3^2} = 9{r_0}$
The radius of the third orbit is calculated as $9{r_0}$.
Answer is Option (D), $9{r_0}$.
Note: In $1913$, Niel Bohr introduced the atomic hydrogen model. Bohr proposed that electrons travel in specific orbits, shells around the nucleus. The Bohr model is used to describe the structure of hydrogen energy levels. It is the first atomic model to explain the radiation spectra of atomic hydrogen.
Limitation of the Bohr model of the Hydrogen Atom:
It couldn’t explain why spectral lines are more intense.
It doesn’t work well for complex atoms.
Heisenberg’s uncertainty principle contradicts Bohr’s idea of electrons existing in specific orbits with a known velocity and radius.
Formula Used:
We will be using the formula of Radius of the nth orbit of an electron. It is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$.
Given: In Bohr’s model of the hydrogen atom, the radius of the first orbit is ${r_0}$ and to find the radius of the third orbit.
Complete step by step solution:
The radius of the nth orbit of an electron is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$
Where, ${r_n}$- Radius of the nth Orbit
${r_0}$- Radius of the first Orbit
Z - Atomic number
\[n\] - Number of orbits
For the hydrogen atom, the Atomic number $Z = 1$
$ \Rightarrow {r_n} = {r_0}{n^2}$
So, for the third orbit $n = 3$
Thus the radius of the third orbit ${r_3} = {r_0} \times {3^2} = 9{r_0}$
The radius of the third orbit is calculated as $9{r_0}$.
Answer is Option (D), $9{r_0}$.
Note: In $1913$, Niel Bohr introduced the atomic hydrogen model. Bohr proposed that electrons travel in specific orbits, shells around the nucleus. The Bohr model is used to describe the structure of hydrogen energy levels. It is the first atomic model to explain the radiation spectra of atomic hydrogen.
Limitation of the Bohr model of the Hydrogen Atom:
It couldn’t explain why spectral lines are more intense.
It doesn’t work well for complex atoms.
Heisenberg’s uncertainty principle contradicts Bohr’s idea of electrons existing in specific orbits with a known velocity and radius.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025