Answer
Verified
110.4k+ views
Hint: First try to find the relation between the mechanical energy, mass, spring constant, damping coefficient, displaced position of mass and the time. After finding the required relation put all the values from the question and finally get the required answer that is the mechanical energy.
Formula used
Mechanical energy is given by:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Where, m is the mass of the body.
k is spring constant.
b is the damping coefficient.
t is time.
x is position displaced.
Complete answer:
First start with the given information:
Mass of the body, m = 2 Kg
Spring constant, $k = 500N/m$
Damping coefficient, $b = 1Kg/s$
Time, $t = 4\sec $
Position displaced, $x = 20cm$
We know that the mechanical energy in case of damping oscillation:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Putting values from the question in above equation;
$E=\dfrac{1}{2}\times500\times (0.2)^{2}e^{\frac{-1\times4}{2}}$
$E=250\times (0.4)\times e^{-2}$
Further solving, we get;
$E = 100{e^{ - 2}}$
$E = 1.37\,J$
Hence, the correct answer is Option B.
Note:Here in order to find the mechanical energy in case of damped oscillation all the values were already given in the question so we just have to put all the values and get the required answer, if any of the value is missing in any other case then the answer will differ in that case.
Formula used
Mechanical energy is given by:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Where, m is the mass of the body.
k is spring constant.
b is the damping coefficient.
t is time.
x is position displaced.
Complete answer:
First start with the given information:
Mass of the body, m = 2 Kg
Spring constant, $k = 500N/m$
Damping coefficient, $b = 1Kg/s$
Time, $t = 4\sec $
Position displaced, $x = 20cm$
We know that the mechanical energy in case of damping oscillation:
$E=\dfrac{1}{2}kx^{2}e^{\frac{-bt}{m}}$
Putting values from the question in above equation;
$E=\dfrac{1}{2}\times500\times (0.2)^{2}e^{\frac{-1\times4}{2}}$
$E=250\times (0.4)\times e^{-2}$
Further solving, we get;
$E = 100{e^{ - 2}}$
$E = 1.37\,J$
Hence, the correct answer is Option B.
Note:Here in order to find the mechanical energy in case of damped oscillation all the values were already given in the question so we just have to put all the values and get the required answer, if any of the value is missing in any other case then the answer will differ in that case.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main