
In photoelectric effect experiment the threshold wavelength of the light is 380 nm. If the wavelength of incident light is 260nm, the maximum kinetic energy electrons will be:
Given \[E\left( {{\text{in eV}}} \right) = \dfrac{{1237}}{{\lambda ({\text{in nm)}}}}\]
(A) \[1.5eV\]
(B) \[4.5eV\]
(C) \[15.1eV\]
(D) \[3.0eV\]
Answer
216.3k+ views
Hint: The maximum kinetic energy of ejected electrons in a photoelectric experiment can be given by the energy of the radiation minus the work function of the metal. The work function is an energy threshold which is the minimum energy required to eject the electron without giving it a kinetic energy.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal.
Complete Step-by-Step Solution:
We are told that a light of wavelength of 260 nm used as an incident light in a photoelectric experiment. Whatever the metal that was used, we are informed that the light must have a threshold wavelength of 380 nm (maximum wavelength which will eject an electron). We are to determine the maximum kinetic energy of the electrons.
We note that the kinetic energy can be given as
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal. This can be written as
\[K{E_{\max }} = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\] since \[E = \dfrac{{hc}}{\lambda }\] where \[h\] is Planck’s constant and \[c\] is speed of light, \[\lambda \] is the wavelength.
As given, \[E\left( {{\text{in eV}}} \right) = \dfrac{{1237}}{{\lambda ({\text{in nm)}}}}\]
Then,
\[K{E_{\max }} = \dfrac{{1237}}{{260}} - \dfrac{{1237}}{{380}}\]
By computation, we have
\[K{E_{\max }} = 1.5eV\]
Hence, the correct option is A
Note: Although it may be odd or confusing, observe that the minimum energy to eject a photon corresponds to the maximum wavelength required. This is because the wavelength and energy are inversely related.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal.
Complete Step-by-Step Solution:
We are told that a light of wavelength of 260 nm used as an incident light in a photoelectric experiment. Whatever the metal that was used, we are informed that the light must have a threshold wavelength of 380 nm (maximum wavelength which will eject an electron). We are to determine the maximum kinetic energy of the electrons.
We note that the kinetic energy can be given as
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal. This can be written as
\[K{E_{\max }} = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\] since \[E = \dfrac{{hc}}{\lambda }\] where \[h\] is Planck’s constant and \[c\] is speed of light, \[\lambda \] is the wavelength.
As given, \[E\left( {{\text{in eV}}} \right) = \dfrac{{1237}}{{\lambda ({\text{in nm)}}}}\]
Then,
\[K{E_{\max }} = \dfrac{{1237}}{{260}} - \dfrac{{1237}}{{380}}\]
By computation, we have
\[K{E_{\max }} = 1.5eV\]
Hence, the correct option is A
Note: Although it may be odd or confusing, observe that the minimum energy to eject a photon corresponds to the maximum wavelength required. This is because the wavelength and energy are inversely related.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

