
In the above-shown figure, the direction of the magnetic force and magnetic field is given then find out the direction of the particle velocity v.

A) To the right.
B) Downward in the plane of the page
C) Upward in the plane of the page
D) Out of the plane of the page
E) Into the plane of the page.
Answer
220.2k+ views
Hint: For the motion of a charged particle in a magnetic field, the magnetic field vector $B$, the velocity of the particle vector $v$, and the magnetic force vector $F$ that exerted on the particle are all perpendicular to each other.
Complete answer:
The right-hand rule of Fleming states that, to find the direction of the magnetic force on a positive charge, the thumb of the right-hand point in the direction of the velocity of the particle $v$, the fingers in the direction of the magnetic field ($B$), and the force ($F$) is directed perpendicular to the right-hand palm.

The magnetic force on a charged particle with positive charge $q$ moving in a magnetic field $B$ with a velocity $v$ (at angle $\theta $ to $B$) is –
\[\overrightarrow F = qvB\sin \theta \]
\[ \Rightarrow \overrightarrow F = q(\overrightarrow v \times \overrightarrow B )\]
Therefore we can say, force is the cross product of $B$ and $v$ and hence Force is in the perpendicular plane of velocity and magnetic field.
Hence In the figure,

the direction of the magnetic field and force are given. Now if we apply Fleming right-hand rule the direction of the particle velocity will be into the plane of the page.
Hence, the option (E) is the correct answer.
Note: Fleming's rules are applied for determining the relation between the directions of magnetic field, electric current and velocity of a conductor.
There are two rules,
Fleming's left-hand rule for motors which applies for an electric current induces motion in the conductor in the presence of magnetic fields known as Lorentz force.
Fleming's right-hand rule for generators, which applies for a conductor moving through a magnetic field, has an electromotive force induced in it as a result known as Faraday's law of induction.
Complete answer:
The right-hand rule of Fleming states that, to find the direction of the magnetic force on a positive charge, the thumb of the right-hand point in the direction of the velocity of the particle $v$, the fingers in the direction of the magnetic field ($B$), and the force ($F$) is directed perpendicular to the right-hand palm.

The magnetic force on a charged particle with positive charge $q$ moving in a magnetic field $B$ with a velocity $v$ (at angle $\theta $ to $B$) is –
\[\overrightarrow F = qvB\sin \theta \]
\[ \Rightarrow \overrightarrow F = q(\overrightarrow v \times \overrightarrow B )\]
Therefore we can say, force is the cross product of $B$ and $v$ and hence Force is in the perpendicular plane of velocity and magnetic field.
Hence In the figure,

the direction of the magnetic field and force are given. Now if we apply Fleming right-hand rule the direction of the particle velocity will be into the plane of the page.
Hence, the option (E) is the correct answer.
Note: Fleming's rules are applied for determining the relation between the directions of magnetic field, electric current and velocity of a conductor.
There are two rules,
Fleming's left-hand rule for motors which applies for an electric current induces motion in the conductor in the presence of magnetic fields known as Lorentz force.
Fleming's right-hand rule for generators, which applies for a conductor moving through a magnetic field, has an electromotive force induced in it as a result known as Faraday's law of induction.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Understanding Entropy Changes in Different Processes

Other Pages
Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Understanding Excess Pressure Inside a Liquid Drop

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Diffraction of Light - Young’s Single Slit Experiment

