In the circuit shown here, the point ‘C’ is kept connected to point ‘A’ till the current flowing through the circuit becomes constant. Afterward, suddenly point ‘C’ is disconnected from point ‘A’ connected to point ‘B’ at time $t = 0$. Ratio of the voltage across resistance and the inductor at $t = L/R$ will be equal to:
(A) $0$
(B) $1$
(C) $ - 1$
(D) Infinity
Answer
Verified
115.5k+ views
Hint: To solve this question, we have to find the steady state current across the inductor, which will be obtained by short circuiting the inductor. Then we have to use the expression for the current in an LR circuit, and substitute the value of the steady state current at the time $t = 0$. From this we will be able to compute the voltages across the resistance and the inductance.
Complete step-by-step solution:
Let the emf of the battery be $E$. According to the question, the point C of the circuit is connected to the point A. So the circuit will look like
So the inductor is connected to the DC source. We know that when a DC source is applied across an inductor, it behaves as a short circuit after the steady state is reached. So the above circuit, after short circuiting the inductor, will look like
So the current in the circuit at this instant is given by
$I = \dfrac{E}{R}$
Now, according to the question the point ‘C’ is disconnected from point ‘A’ connected to point ‘B’ at time $t = 0$. So the circuit will look like
So we have an LR circuit.
Now, we know that the current through an LR circuit is given by
$i\left( t \right) = {i_0}\exp \left( { - \dfrac{t}{\tau }} \right)$.........(1)
As the current cannot suddenly change through an inductor, so the current at the time instant $t = 0$ will be equal to the current through the inductor before closing the circuit, that is,
${i_0} = I = \dfrac{E}{R}$ …...(2)
Putting (2) in (1) we get
$i\left( t \right) = \dfrac{E}{R}\exp \left( { - \dfrac{t}{\tau }} \right)$........(3)
We know that the time constant of an LR circuit is given by
$\tau = \dfrac{L}{R}$...........(4)
According to the question, the given instant of time is
$t = L/R$........................(5)
From (4) and (5)
$t = \tau $
Putting this in (3) we get
$i\left( {L/R} \right) = \dfrac{E}{R}\exp \left( { - \dfrac{\tau }{\tau }} \right)$
$ \Rightarrow i\left( {L/R} \right) = \dfrac{E}{{Re}}$.................(6)
Now, we know from the Ohm’s law that the voltage across the resistance is
${V_R} = IR$
Putting (6) above, we get
\[{V_R} = \left( {\dfrac{E}{{Re}}} \right)R\]
\[ \Rightarrow {V_R} = \dfrac{E}{e}\]...................(7)
We also know that the voltage across an inductor is given by
${V_L} = L\dfrac{{di\left( t \right)}}{{dt}}$
From (3)
${V_L} = L\dfrac{{d\left( {\dfrac{E}{R}\exp \left( { - \dfrac{t}{\tau }} \right)} \right)}}{{dt}}$
\[{V_L} = \dfrac{{ - EL}}{{R\tau }}\exp \left( { - \dfrac{t}{\tau }} \right)\]
Putting the value of the time constant from (4)
\[{V_L} = \dfrac{{ - ELR}}{{RL}}\exp \left( { - \dfrac{{Rt}}{L}} \right)\]
$ \Rightarrow {V_L} = - E\exp \left( { - \dfrac{{Rt}}{L}} \right)$
At the time $t = L/R$ we get the voltage across the inductor as
${V_L} = - E\exp \left( { - \dfrac{{RL}}{{LR}}} \right)$
$ \Rightarrow {V_L} = - \dfrac{E}{e}$......................(8)
Dividing (7) by (8) we get
$\dfrac{{{V_L}}}{{{V_R}}} = - 1$
Thus, the required ratio is equal to $ - 1$.
Hence, the correct answer is option C.
Note: Always ensure that the signs of the voltages across the inductance and the resistance must be opposite. This is because by the application of the Kirchhoff’s voltage law in the LR circuit, we get the sum of these voltages equal to zero.
Complete step-by-step solution:
Let the emf of the battery be $E$. According to the question, the point C of the circuit is connected to the point A. So the circuit will look like
So the inductor is connected to the DC source. We know that when a DC source is applied across an inductor, it behaves as a short circuit after the steady state is reached. So the above circuit, after short circuiting the inductor, will look like
So the current in the circuit at this instant is given by
$I = \dfrac{E}{R}$
Now, according to the question the point ‘C’ is disconnected from point ‘A’ connected to point ‘B’ at time $t = 0$. So the circuit will look like
So we have an LR circuit.
Now, we know that the current through an LR circuit is given by
$i\left( t \right) = {i_0}\exp \left( { - \dfrac{t}{\tau }} \right)$.........(1)
As the current cannot suddenly change through an inductor, so the current at the time instant $t = 0$ will be equal to the current through the inductor before closing the circuit, that is,
${i_0} = I = \dfrac{E}{R}$ …...(2)
Putting (2) in (1) we get
$i\left( t \right) = \dfrac{E}{R}\exp \left( { - \dfrac{t}{\tau }} \right)$........(3)
We know that the time constant of an LR circuit is given by
$\tau = \dfrac{L}{R}$...........(4)
According to the question, the given instant of time is
$t = L/R$........................(5)
From (4) and (5)
$t = \tau $
Putting this in (3) we get
$i\left( {L/R} \right) = \dfrac{E}{R}\exp \left( { - \dfrac{\tau }{\tau }} \right)$
$ \Rightarrow i\left( {L/R} \right) = \dfrac{E}{{Re}}$.................(6)
Now, we know from the Ohm’s law that the voltage across the resistance is
${V_R} = IR$
Putting (6) above, we get
\[{V_R} = \left( {\dfrac{E}{{Re}}} \right)R\]
\[ \Rightarrow {V_R} = \dfrac{E}{e}\]...................(7)
We also know that the voltage across an inductor is given by
${V_L} = L\dfrac{{di\left( t \right)}}{{dt}}$
From (3)
${V_L} = L\dfrac{{d\left( {\dfrac{E}{R}\exp \left( { - \dfrac{t}{\tau }} \right)} \right)}}{{dt}}$
\[{V_L} = \dfrac{{ - EL}}{{R\tau }}\exp \left( { - \dfrac{t}{\tau }} \right)\]
Putting the value of the time constant from (4)
\[{V_L} = \dfrac{{ - ELR}}{{RL}}\exp \left( { - \dfrac{{Rt}}{L}} \right)\]
$ \Rightarrow {V_L} = - E\exp \left( { - \dfrac{{Rt}}{L}} \right)$
At the time $t = L/R$ we get the voltage across the inductor as
${V_L} = - E\exp \left( { - \dfrac{{RL}}{{LR}}} \right)$
$ \Rightarrow {V_L} = - \dfrac{E}{e}$......................(8)
Dividing (7) by (8) we get
$\dfrac{{{V_L}}}{{{V_R}}} = - 1$
Thus, the required ratio is equal to $ - 1$.
Hence, the correct answer is option C.
Note: Always ensure that the signs of the voltages across the inductance and the resistance must be opposite. This is because by the application of the Kirchhoff’s voltage law in the LR circuit, we get the sum of these voltages equal to zero.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main Chemistry Exam Pattern 2025 (Revised) - Vedantu
JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs