
In the figure shown the wave speed is ‘\[v\]’. The velocity of the car is ‘\[{v_0}\]’. The beat frequency for the observer will be:
A. \[\dfrac{{2{f_0}v{v_0}}}{{{v^2} + v_0^2}} \\ \]
B. \[\dfrac{{2{f_0}{v^2}}}{{{v^2} - v_0^2}} \\ \]
C. \[\dfrac{{2{f_0}v{v_0}}}{{{v^2} - v_0^2}} \\ \]
D. \[\dfrac{{{f_0}v{v_0}}}{{{v^2} - v_0^2}}\]
Answer
143.1k+ views
Hint: If the frequency when the car is approaching is \[{f_1}\] and when the car is leaving is \[{f_2}\]. Get the value of \[{f_1}\] and \[{f_2}\] in terms of \[{f_0}\] . The Doppler effect or Doppler shift can be describing the changes in frequency of sound or light wave produced by a moving source with respect to an observer. Also, we know that the beat frequency is defined as the difference in frequency of two waves. By using this we can get the result.
Formula used:
Frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right)\]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right)\]
Where \[{f_1}\] and \[{f_2}\] is the frequency required, \[{f_0}\] is the given frequency, \[v\] is the velocity of the observer and \[{v_0}\] is the velocity of sound.
Beat frequency is given as,
\[{f_1} - {f_2}\]
Where \[{f_1} - {f_2}\] represents the change in frequency.
Complete step by step solution:
As we know that the frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right) \\ \]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right) \\ \]
Now the beat frequency = \[{f_1} - {f_2} \\ \]
\[\text{beat frequency} = {f_0}v\left( {\dfrac{1}{{v - {v_0}}} - \dfrac{1}{{v + {v_0}}}} \right) \\ \]
\[\Rightarrow \text{beat frequency} = {f_0}v\left( {\dfrac{{v + {v_0} - v + {v_0}}}{{{v^2} - v_0^2}}} \right) \\ \]
\[\therefore \text{beat frequency} = \dfrac{{2{f_0}v{v_0}}}{{{v^2} - v_0^2}}\]
Hence option C is the correct answer.
Note:The formula for Doppler Effect is related to the frequency of the sound of an object with its velocity. Doppler Effect is defined as the change in wave frequency during the relative motion between the wave source and its observer. It was given by Christian Johann Doppler. Beats can be determined by subtracting the initial frequency with the frequency observed by the observer.
Formula used:
Frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right)\]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right)\]
Where \[{f_1}\] and \[{f_2}\] is the frequency required, \[{f_0}\] is the given frequency, \[v\] is the velocity of the observer and \[{v_0}\] is the velocity of sound.
Beat frequency is given as,
\[{f_1} - {f_2}\]
Where \[{f_1} - {f_2}\] represents the change in frequency.
Complete step by step solution:
As we know that the frequency when source is approaching is given as,
\[{f_1} = {f_0}\left( {\dfrac{v}{{v - {v_0}}}} \right) \\ \]
Frequency when source is leaving is given as,
\[{f_2} = {f_0}\left( {\dfrac{v}{{v + {v_0}}}} \right) \\ \]
Now the beat frequency = \[{f_1} - {f_2} \\ \]
\[\text{beat frequency} = {f_0}v\left( {\dfrac{1}{{v - {v_0}}} - \dfrac{1}{{v + {v_0}}}} \right) \\ \]
\[\Rightarrow \text{beat frequency} = {f_0}v\left( {\dfrac{{v + {v_0} - v + {v_0}}}{{{v^2} - v_0^2}}} \right) \\ \]
\[\therefore \text{beat frequency} = \dfrac{{2{f_0}v{v_0}}}{{{v^2} - v_0^2}}\]
Hence option C is the correct answer.
Note:The formula for Doppler Effect is related to the frequency of the sound of an object with its velocity. Doppler Effect is defined as the change in wave frequency during the relative motion between the wave source and its observer. It was given by Christian Johann Doppler. Beats can be determined by subtracting the initial frequency with the frequency observed by the observer.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electrical Field of Charged Spherical Shell - JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

Charging and Discharging of Capacitor

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

The dimensional formula of k Coulombs Constant is Take class 11 physics JEE_Main

Introduction to Dimensions With Different Units and Formula for JEE

NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

NCERT Solutions for Class 11 Physics In Hindi Chapter 1 Physical World
