Answer
Verified
112.8k+ views
Hint: In an RC ac circuit it is better to draw the phase diagram. It gives a better understanding of phase angles.
Complete step by step solution:
The phase diagram for an ac circuit tells us about the phase angle of current and voltage. It is usually drawn for an RC circuit, RL circuit, LC circuit and RLC circuit. In it we usually find the phase angles of currents flowing through all the elements of the circuit with respect to current through the resistor.
The circuit given in the question is an RLC circuit.
This circuit will have some reactance along with resistance. Also it will not have an equivalent resistance but an equivalent impedance (Z).
This phase difference $\phi $ depends upon the reactive value of the components being used and hopefully we know that reactance, (X) is zero if the circuit element is resistive, positive if the circuit element is inductive and negative if it is capacitive.
Now let’s say that, for current through R, the instantaneous current will be given by;
$i = {i_0}\sin (\omega t)$ (${i_0}$is the maximum value of the current)
Also, instantaneous voltage will be;
${v_r} = {v_0}\sin (\omega t)$ (${v_0}$ is the maximum value of voltage) ---------eq. (1)
But for capacitor the value of instantaneous charge in the capacitor will be;
$q = {q_0}\sin (\omega t) = C{v_0}\sin (\omega t)$ (${q_0}$ is the maximum charge)
Thus by differentiating the above equation with respect to time we get;
${i_c} = C{v_0}\omega \cos (\omega t)$ (${i_c}$ is the instantaneous current through the capacitor)
Hence instantaneous voltage across capacitor is given by;
${i_c}{X_c} = {v_c} = {v_0}\sin (\omega t + \dfrac{\pi }{2})$ -----eq. (2)
From equation: 1 and equation: 2 we get that the angle between the phase of voltage across resistance and phase of voltage across capacitor is 90 degree.
In an ac RLC circuit the instantaneous current through the resistor and voltage across resistor are in phase. But the voltage across the capacitor lags by 90 degrees. The diagram below shows the angle between voltage across resistor and voltage across capacitor is 90 degree.
Hence option (B) is correct.
Note:
1. Voltage across the inductor leads by 90 degrees from voltage across the resistor.
2. Voltage across resistor and current across resistor are in phase.
3. Angle between the phases of voltage across the inductor and voltage across the capacitor is 180 degrees.
Complete step by step solution:
The phase diagram for an ac circuit tells us about the phase angle of current and voltage. It is usually drawn for an RC circuit, RL circuit, LC circuit and RLC circuit. In it we usually find the phase angles of currents flowing through all the elements of the circuit with respect to current through the resistor.
The circuit given in the question is an RLC circuit.
This circuit will have some reactance along with resistance. Also it will not have an equivalent resistance but an equivalent impedance (Z).
This phase difference $\phi $ depends upon the reactive value of the components being used and hopefully we know that reactance, (X) is zero if the circuit element is resistive, positive if the circuit element is inductive and negative if it is capacitive.
Now let’s say that, for current through R, the instantaneous current will be given by;
$i = {i_0}\sin (\omega t)$ (${i_0}$is the maximum value of the current)
Also, instantaneous voltage will be;
${v_r} = {v_0}\sin (\omega t)$ (${v_0}$ is the maximum value of voltage) ---------eq. (1)
But for capacitor the value of instantaneous charge in the capacitor will be;
$q = {q_0}\sin (\omega t) = C{v_0}\sin (\omega t)$ (${q_0}$ is the maximum charge)
Thus by differentiating the above equation with respect to time we get;
${i_c} = C{v_0}\omega \cos (\omega t)$ (${i_c}$ is the instantaneous current through the capacitor)
Hence instantaneous voltage across capacitor is given by;
${i_c}{X_c} = {v_c} = {v_0}\sin (\omega t + \dfrac{\pi }{2})$ -----eq. (2)
From equation: 1 and equation: 2 we get that the angle between the phase of voltage across resistance and phase of voltage across capacitor is 90 degree.
In an ac RLC circuit the instantaneous current through the resistor and voltage across resistor are in phase. But the voltage across the capacitor lags by 90 degrees. The diagram below shows the angle between voltage across resistor and voltage across capacitor is 90 degree.
Hence option (B) is correct.
Note:
1. Voltage across the inductor leads by 90 degrees from voltage across the resistor.
2. Voltage across resistor and current across resistor are in phase.
3. Angle between the phases of voltage across the inductor and voltage across the capacitor is 180 degrees.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking