Answer
Verified
109.8k+ views
Hint: In order to solve this question you have to know the concept of pulley and tension in thread. A pulley is a simple machine that redirects force. Tension is the force that is transmitted through a string, rope, cable, or wire when it is pulled tight by forces acting from opposite ends.
Complete step by step solution:
In this question it is given that ${M_1} > {M_2}$, so the tension in the string connecting the block and surface is given by
${T_{BC}} = ({M_1} - {M_2})g$
It is also given in the question that the string BC is burnt, then this tension disappears and the tension in the spring becomes
${T_s} = {M_1}g$
The spring also gets elongated.
Now, the tension in the string connected to A and B is given by
${T_{AB}} = {M_1}g$
Hence, the resultant force on A becomes zero because the tension in string is balanced by spring tension.
Hence, the net force exerted on the block B which is upward in direction is given by
${F_B} = ({M_1} - {M_2})g$
So, the initial acceleration of the block B is given by
${u_B} = \dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$
Thus, the initial acceleration of mass ${M_1}$ is zero
And the initial acceleration of mass ${M_2}$ is $\dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$ and the direction is upward.
Thus, the correct option is (D).
Note: While solving questions like this we should always draw a free body diagram (FBD) to show the forces exerted on the body. Also, you have to make some assumptions while writing equations that the string is taut and inextensible at each and every point of time, the pulley is massless, and also the string is massless.
Complete step by step solution:
In this question it is given that ${M_1} > {M_2}$, so the tension in the string connecting the block and surface is given by
${T_{BC}} = ({M_1} - {M_2})g$
It is also given in the question that the string BC is burnt, then this tension disappears and the tension in the spring becomes
${T_s} = {M_1}g$
The spring also gets elongated.
Now, the tension in the string connected to A and B is given by
${T_{AB}} = {M_1}g$
Hence, the resultant force on A becomes zero because the tension in string is balanced by spring tension.
Hence, the net force exerted on the block B which is upward in direction is given by
${F_B} = ({M_1} - {M_2})g$
So, the initial acceleration of the block B is given by
${u_B} = \dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$
Thus, the initial acceleration of mass ${M_1}$ is zero
And the initial acceleration of mass ${M_2}$ is $\dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$ and the direction is upward.
Thus, the correct option is (D).
Note: While solving questions like this we should always draw a free body diagram (FBD) to show the forces exerted on the body. Also, you have to make some assumptions while writing equations that the string is taut and inextensible at each and every point of time, the pulley is massless, and also the string is massless.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
In a steady state of heat conduction the temperature class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main