
Integrate the given function $x{{\sin }^{-1}}x$?
Answer
232.8k+ views
Hint: We have multiplication of two functions involved in $x{{\sin }^{-1}}x$. To integrate $x{{\sin }^{-1}}x$, we use integration by parts by taking ${{\sin }^{-1}}x$ as the function outside of the integral. Once we have done the by parts, we make the changes in the denominator to get the value of all the integrals involved in this calculation. We make the necessary reductions to get the required result.
Complete step-by-step solution:
Given that we have function $x{{\sin }^{-1}}x$ and we need to integrate that given function.
So, we need to find the value of $\int{x{{\sin }^{-1}}xdx}$.
To solve the problem, we need to use the result of integration by parts. We know that integration by parts is to be done when a combination of two or more functions are multiplied to each other inside the integral.
We know that integration of the function fg is defined as $\int{fgdx=f\int{gdx}-\int{\left( \left( \dfrac{df}{dx} \right).\int{gdx} \right)}dx}$.
Let us take $f\left( x \right)={{\sin }^{-1}}\left( x \right)$ and g(x) = x.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}x\int{xdx} \right)-\int{\left( \left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx} \right).\int{xdx} \right)}dx$.
We know that $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}\left( x \right).\dfrac{{{x}^{2}}}{2} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}.\dfrac{{{x}^{2}}}{2} \right)}dx$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\left( a+b \right)dx=\int{adx+\int{bdx}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\sqrt{1-{{x}^{2}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\sqrt{1-{{x}^{2}}}dx=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x+C}$ and $\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx={{\sin }^{-1}}x}+C$.
So, we have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x \right)-\dfrac{1}{2}\times \left( {{\sin }^{-1}}x \right)+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{1}{4}{{\sin }^{-1}}x-\dfrac{1}{2}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}-\dfrac{1}{4}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
We got the value of $\int{x{{\sin }^{-1}}xdx}$ as $\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
$\therefore$ The integral $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
Note: Whenever we see the integration problem involving inverse trigonometric functions, we use integrations by parts to get the integration. We always take inverse functions as ‘f’ for doing by parts as they cannot be integrated directly. While calculating the integral by parts, we need to make sure that no signs are gone wrong.
Complete step-by-step solution:
Given that we have function $x{{\sin }^{-1}}x$ and we need to integrate that given function.
So, we need to find the value of $\int{x{{\sin }^{-1}}xdx}$.
To solve the problem, we need to use the result of integration by parts. We know that integration by parts is to be done when a combination of two or more functions are multiplied to each other inside the integral.
We know that integration of the function fg is defined as $\int{fgdx=f\int{gdx}-\int{\left( \left( \dfrac{df}{dx} \right).\int{gdx} \right)}dx}$.
Let us take $f\left( x \right)={{\sin }^{-1}}\left( x \right)$ and g(x) = x.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}x\int{xdx} \right)-\int{\left( \left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx} \right).\int{xdx} \right)}dx$.
We know that $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}\left( x \right).\dfrac{{{x}^{2}}}{2} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}.\dfrac{{{x}^{2}}}{2} \right)}dx$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\left( a+b \right)dx=\int{adx+\int{bdx}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\sqrt{1-{{x}^{2}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\sqrt{1-{{x}^{2}}}dx=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x+C}$ and $\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx={{\sin }^{-1}}x}+C$.
So, we have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x \right)-\dfrac{1}{2}\times \left( {{\sin }^{-1}}x \right)+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{1}{4}{{\sin }^{-1}}x-\dfrac{1}{2}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}-\dfrac{1}{4}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
We got the value of $\int{x{{\sin }^{-1}}xdx}$ as $\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
$\therefore$ The integral $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
Note: Whenever we see the integration problem involving inverse trigonometric functions, we use integrations by parts to get the integration. We always take inverse functions as ‘f’ for doing by parts as they cannot be integrated directly. While calculating the integral by parts, we need to make sure that no signs are gone wrong.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

