
Isothermal bulk modulus of an ideal gas at pressure ‘P’ is:
A) $P$.
B) $\gamma P$
C) $\dfrac{P}{2}$.
D) $\dfrac{P}{R}$
Answer
146.7k+ views
Hint: Bulk modulus is the measure of the compression of any substance. The bulk modulus is the ratio of infinite pressure increase to the volume of the substance. The reciprocal of the bulk modulus is known as compressibility.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
