
Isothermal bulk modulus of an ideal gas at pressure ‘P’ is:
A) $P$.
B) $\gamma P$
C) $\dfrac{P}{2}$.
D) $\dfrac{P}{R}$
Answer
232.8k+ views
Hint: Bulk modulus is the measure of the compression of any substance. The bulk modulus is the ratio of infinite pressure increase to the volume of the substance. The reciprocal of the bulk modulus is known as compressibility.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

