
Isothermal bulk modulus of an ideal gas at pressure ‘P’ is:
A) $P$.
B) $\gamma P$
C) $\dfrac{P}{2}$.
D) $\dfrac{P}{R}$
Answer
219k+ views
Hint: Bulk modulus is the measure of the compression of any substance. The bulk modulus is the ratio of infinite pressure increase to the volume of the substance. The reciprocal of the bulk modulus is known as compressibility.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
Understanding Average and RMS Value in Electrical Circuits

NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

