
Keeping dissimilar poles of two magnets of equal pole strength and length same side, their time period will be
A. One second
B. Zero
C. Infinity
D. Any values
Answer
138.3k+ views
Hint:We cannot just add the individual time periods of the two bar magnets since they are connected. The combined resultant system's time period must be determined. For this, we'll think of the system's moment of inertia and magnetic moment as being equal to the sum of its two moments of inertia and two moments of magnetic moment (if polarity is the same).
Formula used:
The time period of vibration magnetometer is,
Where moment of inertia about the axis of rotation
Magnetic moment of magnet
Earth’s magnetic field
Complete step by step solution:
A bar magnet will rotate and attempt to align itself with the magnetic field when it is placed in a uniform magnetic field because of the force acting in the field's direction. Due to the rotational inertia caused by the torque, the magnet will rotate and attempt to align with the field, causing the bar magnet to move in a straightforward harmonic manner.
The torque acting on a bar magnet and rotational inertia are the basic operating principles of a vibration magnetometer. The time period of vibration magnetometer is given by,
Keeping the opposite poles of two magnets with equivalent pole strengths and lengths. In this position we can say that,
Since the pole strength is same, we can say that
Putting the value, we get
Hence option C is correct.
Note: On a rough note, it might be claimed that the time period of the resulting system will rise if one of the poles of a combined system of two magnets is flipped while maintaining all other parameters constant. We add the magnetic pole if the other poles remain similar.
Formula used:
The time period of vibration magnetometer is,
Where
Complete step by step solution:
A bar magnet will rotate and attempt to align itself with the magnetic field when it is placed in a uniform magnetic field because of the force acting in the field's direction. Due to the rotational inertia caused by the torque, the magnet will rotate and attempt to align with the field, causing the bar magnet to move in a straightforward harmonic manner.
The torque acting on a bar magnet and rotational inertia are the basic operating principles of a vibration magnetometer. The time period of vibration magnetometer is given by,
Keeping the opposite poles of two magnets with equivalent pole strengths and lengths. In this position we can say that,
Since the pole strength is same, we can say that
Putting the value, we get
Hence option C is correct.
Note: On a rough note, it might be claimed that the time period of the resulting system will rise if one of the poles of a combined system of two magnets is flipped while maintaining all other parameters constant. We add the magnetic pole if the other poles remain similar.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Charging and Discharging of Capacitor
