
Let f be a twice differentiable such that ${f}''\left( x \right)=-f\left( x \right)$ and ${f}'\left( x \right)=g\left( x \right)$. If $h\left( x \right)={{\left\{ f\left( x \right) \right\}}^{2}}+{{\left\{ g\left( x \right) \right\}}^{2}}$, where h (5) = 11. Find the value of h (10).
(a) 1
(b) 10
(c) 11
(d) 100
Answer
232.8k+ views
Hint: First, differentiate the equation ${f}'\left( x \right)=g\left( x \right)$ and compare it with ${f}''\left( x \right)=-f\left( x \right)$ to get ${g}'\left( x \right)=-f\left( x \right)$. Next, differentiate the equation $h\left( x \right)={{\left\{ f\left( x \right) \right\}}^{2}}+{{\left\{ g\left( x \right) \right\}}^{2}}$ and substitute ${f}'\left( x \right)=g\left( x \right)$ and ${g}'\left( x \right)=-f\left( x \right)$ to get ${h}'\left( x \right)=0$. Integrate this to get $h\left( x \right)=c$ where c is a constant. Compare this with $h\left( 5 \right)=11$ to get the final answer.
Complete step-by-step solution -
In this question, we are given that f is a twice differentiable such that ${f}''\left( x \right)=-f\left( x \right)$ and ${f}'\left( x \right)=g\left( x \right)$. $h\left( x \right)={{\left\{ f\left( x \right) \right\}}^{2}}+{{\left\{ g\left( x \right) \right\}}^{2}}$, where h (5) = 11.
We need to find the value of h (10).
First, we will start with ${f}'\left( x \right)=g\left( x \right)$.
On differentiating both sides of this expression, we will get the following:
${f}''\left( x \right)={g}'\left( x \right)$
But we are given that ${f}''\left( x \right)=-f\left( x \right)$. On comparing these two equations, we will get the following:
${g}'\left( x \right)=-f\left( x \right)$ …(1)
Now, we will look into $h\left( x \right)={{\left\{ f\left( x \right) \right\}}^{2}}+{{\left\{ g\left( x \right) \right\}}^{2}}$.
On differentiating both sides of this expression, we will get the following:
${h}'\left( x \right)=2f\left( x \right)\times {f}'\left( x \right)+2g\left( x \right)\times {g}'\left( x \right)$
Her, we are given that ${f}'\left( x \right)=g\left( x \right)$ and we deduced in equation (1) that ${g}'\left( x \right)=-f\left( x \right)$.
Substituting these in the above equation, we will get the following:
${h}'\left( x \right)=2f\left( x \right)\times g\left( x \right)+2g\left( x \right)\times \left( -f\left( x \right) \right)$
$h\left( 5 \right)=11$
${h}'\left( x \right)=0$
Now, we know that a function whose derivative is zero is a constant function.
Using the fact above, we will get the following:
$h\left( x \right)=c$, where c is a constant.
We need to find the value of this c.
We are given that $h\left( 5 \right)=11$. On comparing this with the above equation, we will get the following:
c = 11
So, $h\left( 10 \right)=11$
Hence, option (c) is correct.
Note:- In this question, it is very important to identify the functions which will be beneficial to differentiate. You have to differentiate the right functions in order to get an expression which can be used further in the solution.
Complete step-by-step solution -
In this question, we are given that f is a twice differentiable such that ${f}''\left( x \right)=-f\left( x \right)$ and ${f}'\left( x \right)=g\left( x \right)$. $h\left( x \right)={{\left\{ f\left( x \right) \right\}}^{2}}+{{\left\{ g\left( x \right) \right\}}^{2}}$, where h (5) = 11.
We need to find the value of h (10).
First, we will start with ${f}'\left( x \right)=g\left( x \right)$.
On differentiating both sides of this expression, we will get the following:
${f}''\left( x \right)={g}'\left( x \right)$
But we are given that ${f}''\left( x \right)=-f\left( x \right)$. On comparing these two equations, we will get the following:
${g}'\left( x \right)=-f\left( x \right)$ …(1)
Now, we will look into $h\left( x \right)={{\left\{ f\left( x \right) \right\}}^{2}}+{{\left\{ g\left( x \right) \right\}}^{2}}$.
On differentiating both sides of this expression, we will get the following:
${h}'\left( x \right)=2f\left( x \right)\times {f}'\left( x \right)+2g\left( x \right)\times {g}'\left( x \right)$
Her, we are given that ${f}'\left( x \right)=g\left( x \right)$ and we deduced in equation (1) that ${g}'\left( x \right)=-f\left( x \right)$.
Substituting these in the above equation, we will get the following:
${h}'\left( x \right)=2f\left( x \right)\times g\left( x \right)+2g\left( x \right)\times \left( -f\left( x \right) \right)$
$h\left( 5 \right)=11$
${h}'\left( x \right)=0$
Now, we know that a function whose derivative is zero is a constant function.
Using the fact above, we will get the following:
$h\left( x \right)=c$, where c is a constant.
We need to find the value of this c.
We are given that $h\left( 5 \right)=11$. On comparing this with the above equation, we will get the following:
c = 11
So, $h\left( 10 \right)=11$
Hence, option (c) is correct.
Note:- In this question, it is very important to identify the functions which will be beneficial to differentiate. You have to differentiate the right functions in order to get an expression which can be used further in the solution.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

