
Light of frequency \[8 \times {10^5}{\rm{ Hz}}\] is incident on a substance of photoelectric work function 6.125 eV. The maximum kinetic energy of the emitted photoelectrons is
A. 17 eV
B. 22 eV
C. 27 eV
D. 37 eV
Answer
133.8k+ views
Hint: According to the Einstein equation, the maximum kinetic energy of electrons is equal to the energy of the incident light energy packet minus the work function. Photoelectric is the phenomenon where electrons are ejected from a metal surface when light of sufficient frequency is incident on it. Photoelectrons thus are ejected from a material when light is incident on the surface. Different wavelengths will result in different maximum kinetic energy.
Formula used The energy of the photon is given by the equation is given as:
\[E = h\upsilon = \dfrac{{hc}}{\lambda }\].
Where \[h\] is the Plank’s constant, \[\upsilon \] is the frequency of incident light, c is the speed of light and \[\lambda \] is the wavelength.
The maximum kinetic energy of photoelectrons is given as:
\[K{E_{\max }} = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Complete step by step solution:
Given Frequency of light, \[\upsilon = 8 \times {10^{15}}Hz\]
Work function, \[\phi \]= 6.125 eV
As we know that the energy of the photon is,
\[E = h\upsilon \]
\[\Rightarrow E = 6.6 \times {10^{ - 34}} \times 8 \times {10^{15}}\]
\[\Rightarrow E= 5.28 \times {10^{ - 18}}J\]
\[\Rightarrow E= 33\,eV\]
By Einstein equation,
\[K{E_{\max }} = E - \phi \]
\[\Rightarrow K{E_{\max }}= 33 - 6.125\]
\[\therefore K{E_{\max }} = 27\,eV\]
Therefore, the maximum kinetic energy of the emitted photoelectrons is \[27\,eV\].
Hence option C is the correct answer.
Note: Always remember that maximum kinetic energy of the ejected electrons depends only on the energy of the incident radiation and independent of the intensity of it. Most of the students make this mistake while solving the problem or applying the concept of photoelectric effect.
Formula used The energy of the photon is given by the equation is given as:
\[E = h\upsilon = \dfrac{{hc}}{\lambda }\].
Where \[h\] is the Plank’s constant, \[\upsilon \] is the frequency of incident light, c is the speed of light and \[\lambda \] is the wavelength.
The maximum kinetic energy of photoelectrons is given as:
\[K{E_{\max }} = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Complete step by step solution:
Given Frequency of light, \[\upsilon = 8 \times {10^{15}}Hz\]
Work function, \[\phi \]= 6.125 eV
As we know that the energy of the photon is,
\[E = h\upsilon \]
\[\Rightarrow E = 6.6 \times {10^{ - 34}} \times 8 \times {10^{15}}\]
\[\Rightarrow E= 5.28 \times {10^{ - 18}}J\]
\[\Rightarrow E= 33\,eV\]
By Einstein equation,
\[K{E_{\max }} = E - \phi \]
\[\Rightarrow K{E_{\max }}= 33 - 6.125\]
\[\therefore K{E_{\max }} = 27\,eV\]
Therefore, the maximum kinetic energy of the emitted photoelectrons is \[27\,eV\].
Hence option C is the correct answer.
Note: Always remember that maximum kinetic energy of the ejected electrons depends only on the energy of the incident radiation and independent of the intensity of it. Most of the students make this mistake while solving the problem or applying the concept of photoelectric effect.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

JEE Main Chemistry Question Paper with Answer Keys and Solutions
