
Light of wavelength \[1824\mathop A\limits^ \circ \], incident on the surface of a metal produces photoelectrons with maximum energy 5.3 eV. Now, when the light of wavelength \[1216\mathop A\limits^ \circ \] is used, the maximum energy of photoelectrons is 8.7 eV. The work function of the metallic surface is:
A. 6.8 eV
B. 1.5 eV
C. 13.6 eV
D. 3.5 eV
Answer
232.8k+ views
Hint: The maximum kinetic energy of the photoelectron is calculated by finding the difference of the total energy of the photon and the work function of the metal. When the energy of the photon and maximum kinetic energy of the photoelectron is given then we calculate the work function from this and use it to find other quantities.
Formula used:
\[E = \dfrac{{hc}}{\lambda } - {\phi _0}\]
here E is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[{\phi _0}\] is the work function of the metal.
Complete step by step solution:
When light of wavelength \[1824\mathop A\limits^ \circ \] is incident on the surface of a metal then it produces photoelectrons with maximum energy 5.3 eV.
\[5.3eV = \dfrac{{eV}}{{1.6 \times {{10}^{ - 34}}}}\left( {\dfrac{{hc}}{{1.824 \times {{10}^{ - 7}}}}} \right) - {\phi _0} \\ \]
\[\Rightarrow 5.3eV = \dfrac{1}{{1.6 \times {{10}^{ - 19}}}}\left( {\dfrac{{\left( {6.626 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{1.824 \times {{10}^{ - 7}}}}} \right)eV - {\phi _0} \\ \]
\[\Rightarrow 5.3eV = 6.811eV - {\phi _0} \\ \]
\[\Rightarrow {\phi _0} = \left( {6.811 - 5.3} \right)eV \\ \]
\[\Rightarrow {\phi _0} = 1.51eV \ldots \left( i \right)\]
Now, when the light of wavelength \[1216\mathop A\limits^ \circ \]is used, the maximum energy of photoelectrons is 8.7 eV.
\[8.7eV = \dfrac{{eV}}{{1.6 \times {{10}^{ - 34}}}}\left( {\dfrac{{hc}}{{1.216 \times {{10}^{ - 7}}}}} \right) - {\phi _0} \\ \]
\[\Rightarrow 8.7eV = \dfrac{1}{{1.6 \times {{10}^{ - 19}}}}\left( {\dfrac{{\left( {6.626 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{1.216 \times {{10}^{ - 7}}}}} \right)eV - {\phi _0} \\ \]
\[\Rightarrow 8.7eV = 10.22eV - {\phi _0} \\ \]
\[\Rightarrow {\phi _0} = \left( {10.11 - 8.7} \right)eV \\ \]
\[\therefore {\phi _0} = 1.52eV \ldots \left( {ii} \right)\]
From both the data it can be said that the work function of the given metal is approximately 1.5 eV.
Therefore,the correct option is B.
Note: To check the final answer we can verify by using in the first part of the question where the energy of the photon is given as well as the maximum energy. If the work function comes out the same in both parts then the final answer is correct.
Formula used:
\[E = \dfrac{{hc}}{\lambda } - {\phi _0}\]
here E is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[{\phi _0}\] is the work function of the metal.
Complete step by step solution:
When light of wavelength \[1824\mathop A\limits^ \circ \] is incident on the surface of a metal then it produces photoelectrons with maximum energy 5.3 eV.
\[5.3eV = \dfrac{{eV}}{{1.6 \times {{10}^{ - 34}}}}\left( {\dfrac{{hc}}{{1.824 \times {{10}^{ - 7}}}}} \right) - {\phi _0} \\ \]
\[\Rightarrow 5.3eV = \dfrac{1}{{1.6 \times {{10}^{ - 19}}}}\left( {\dfrac{{\left( {6.626 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{1.824 \times {{10}^{ - 7}}}}} \right)eV - {\phi _0} \\ \]
\[\Rightarrow 5.3eV = 6.811eV - {\phi _0} \\ \]
\[\Rightarrow {\phi _0} = \left( {6.811 - 5.3} \right)eV \\ \]
\[\Rightarrow {\phi _0} = 1.51eV \ldots \left( i \right)\]
Now, when the light of wavelength \[1216\mathop A\limits^ \circ \]is used, the maximum energy of photoelectrons is 8.7 eV.
\[8.7eV = \dfrac{{eV}}{{1.6 \times {{10}^{ - 34}}}}\left( {\dfrac{{hc}}{{1.216 \times {{10}^{ - 7}}}}} \right) - {\phi _0} \\ \]
\[\Rightarrow 8.7eV = \dfrac{1}{{1.6 \times {{10}^{ - 19}}}}\left( {\dfrac{{\left( {6.626 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{1.216 \times {{10}^{ - 7}}}}} \right)eV - {\phi _0} \\ \]
\[\Rightarrow 8.7eV = 10.22eV - {\phi _0} \\ \]
\[\Rightarrow {\phi _0} = \left( {10.11 - 8.7} \right)eV \\ \]
\[\therefore {\phi _0} = 1.52eV \ldots \left( {ii} \right)\]
From both the data it can be said that the work function of the given metal is approximately 1.5 eV.
Therefore,the correct option is B.
Note: To check the final answer we can verify by using in the first part of the question where the energy of the photon is given as well as the maximum energy. If the work function comes out the same in both parts then the final answer is correct.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

