Answer
Verified
110.4k+ views
Hint: We all know that to eject an electron from the metal surface, we need a specific amount of energy with a particular frequency and that frequency is called threshold frequency which when provided to the electrons so that they can come out of the surface.
Complete step by step answer:
As we all know the that by the Einstein’s photoelectric equation, the energy of the photon is given by:
$E = W + KE$ …… (I)
Here E is the energy of the photon , W is the work potential and KE is the kinetic energy of the photo electrons.
As we all know that by Einstein-Planck's equation:
$E = \dfrac{{hc}}{\lambda }$
Here h is the planck’s constant, c is the speed of light and $\lambda $ is the wavelength of emitted radiation.
We will substitute $E = \dfrac{{hc}}{\lambda }$ in equation (I) to finalise the equation. Hence we will get,
$ \Rightarrow \dfrac{{hc}}{\lambda } = W + KE$ ……. (II)
So for the state 1, we can write the equation (II) as, the subscript 1 tells about state 1.
\[ \Rightarrow \dfrac{{hc}}{\lambda } = W + K{E_1}\] …… (III)
Now since the kinetic energy is doubled , so the equation (II) becomes,
$ \Rightarrow \dfrac{{hc}}{{\lambda '}} = W + 2K{E_1}$ …… (IV)
Now we will divide equation (I) from equation (II) and we will get,
\[
\Rightarrow \dfrac{{\dfrac{{hc}}{\lambda }}}{{\dfrac{{hc}}{{\lambda '}}}} = \dfrac{{W + K{E_1}}}{{W + 2K{E_1}}} \\
\Rightarrow \dfrac{{\lambda '}}{\lambda } = \dfrac{{W + K{E_1}}}{{W + 2K{E_1}}} \\
\therefore \dfrac{{\lambda '}}{\lambda } < 1 \\
\]
Now we can clearly say that, \[\lambda ' < \lambda \]. Therefore, the only option matches is (C). Hence the correct option is (C).
Note: As we all know that Einstein produced a very effective model of radiation and told that light consists of a very small number of particles. These are not the matter particles but are the packets of pure energy. Each of the packets are called the quantum of energy and are called photons.
Complete step by step answer:
As we all know the that by the Einstein’s photoelectric equation, the energy of the photon is given by:
$E = W + KE$ …… (I)
Here E is the energy of the photon , W is the work potential and KE is the kinetic energy of the photo electrons.
As we all know that by Einstein-Planck's equation:
$E = \dfrac{{hc}}{\lambda }$
Here h is the planck’s constant, c is the speed of light and $\lambda $ is the wavelength of emitted radiation.
We will substitute $E = \dfrac{{hc}}{\lambda }$ in equation (I) to finalise the equation. Hence we will get,
$ \Rightarrow \dfrac{{hc}}{\lambda } = W + KE$ ……. (II)
So for the state 1, we can write the equation (II) as, the subscript 1 tells about state 1.
\[ \Rightarrow \dfrac{{hc}}{\lambda } = W + K{E_1}\] …… (III)
Now since the kinetic energy is doubled , so the equation (II) becomes,
$ \Rightarrow \dfrac{{hc}}{{\lambda '}} = W + 2K{E_1}$ …… (IV)
Now we will divide equation (I) from equation (II) and we will get,
\[
\Rightarrow \dfrac{{\dfrac{{hc}}{\lambda }}}{{\dfrac{{hc}}{{\lambda '}}}} = \dfrac{{W + K{E_1}}}{{W + 2K{E_1}}} \\
\Rightarrow \dfrac{{\lambda '}}{\lambda } = \dfrac{{W + K{E_1}}}{{W + 2K{E_1}}} \\
\therefore \dfrac{{\lambda '}}{\lambda } < 1 \\
\]
Now we can clearly say that, \[\lambda ' < \lambda \]. Therefore, the only option matches is (C). Hence the correct option is (C).
Note: As we all know that Einstein produced a very effective model of radiation and told that light consists of a very small number of particles. These are not the matter particles but are the packets of pure energy. Each of the packets are called the quantum of energy and are called photons.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main