How much load of specific gravity \[11\] should be added to a piece of cork of specific gravity $0.2$ weighing $10g$ so that it may just float on water?
(A) $4.4g$
(B) $44g$
(C) $440g$
(D) $2.2g$
Answer
Verified
122.7k+ views
Hint: Specific Gravity is defined as the ratio of density of a given object to the density of water. For the cork to just float on water, it has to be in complete vertical equilibrium, that is the buoyant force has to be equal to the total weight.
Complete step by step answer:
We know that specific gravity is the ratio between the density of an object and density of water $\left( \rho \right)$. So to calculate density of load $\left( {{\rho _1}} \right)$,
Specific Gravity$ = \dfrac{{{\rho _1}}}{\rho }$
$\Rightarrow 11 = \dfrac{{{\rho _1}}}{\rho }$
Since, $\rho = 1g/cc$
$\Rightarrow {\rho _1} = 11g/cc$
Similarly the density of cork $\left( {{\rho _2}} \right)$ can be calculated and,
${\rho _2} = 0.2g/cc$
Mass of cork, ${m_2} = 10g$
So, the volume of cork, ${V_2} = \dfrac{{{m_2}}}{{{\rho _2}}}$
$\Rightarrow {V_2} = \dfrac{{10}}{{0.2}}$
$\Rightarrow {V_2} = 50c{m^3}$
Let the volume of load which is to be added be ${V_1}$, then in order to attain equilibrium, buoyant force $\left( {{F_B}} \right)$ has to be equal to the sum of weight of load and weight of cork$\left( {{W_2}} \right)$, that is
$\Rightarrow {F_B} = {W_1} + {W_2}$
Since the cork and load displace ${V_1} + {V_2}$ volume of water,
$\Rightarrow \left( {{V_1} + {V_2}} \right)\rho g = mg + {V_1}{\rho _1}g$
$\Rightarrow {V_1} + {V_2} = m + {V_1}{\rho _1}$
$\Rightarrow \left[ {\rho = 1g/cc} \right]$
$\Rightarrow {V_2} - m = {V_1}{\rho _1} - {V_1}$
$\Rightarrow {V_2} - m = {V_1}\left( {{\rho _1} - 1} \right)$
$\Rightarrow {V_1} = \dfrac{{{V_2} - m}}{{{\rho _1} - 1}}$
$\Rightarrow {V_1} = \dfrac{{50 - 10}}{{11 - 1}}$
$\Rightarrow {V_1} = \dfrac{{40}}{{10}}$
$\Rightarrow {V_1} = 4c{m^3}$
To calculate mass of the load to be added, ${m_1} = {\rho _1}{V_1}$
$\Rightarrow {m_1} = 11 \times 4$
$\Rightarrow {m_1} = 44g$
Therefore option B is correct.
Note: Buoyant force is an upward force exerted by the water displaced by the object. If the buoyant force is greater than or equal to the weight of the object, the object floats. If the buoyant force is less than the weight of the object, it sinks.
Complete step by step answer:
We know that specific gravity is the ratio between the density of an object and density of water $\left( \rho \right)$. So to calculate density of load $\left( {{\rho _1}} \right)$,
Specific Gravity$ = \dfrac{{{\rho _1}}}{\rho }$
$\Rightarrow 11 = \dfrac{{{\rho _1}}}{\rho }$
Since, $\rho = 1g/cc$
$\Rightarrow {\rho _1} = 11g/cc$
Similarly the density of cork $\left( {{\rho _2}} \right)$ can be calculated and,
${\rho _2} = 0.2g/cc$
Mass of cork, ${m_2} = 10g$
So, the volume of cork, ${V_2} = \dfrac{{{m_2}}}{{{\rho _2}}}$
$\Rightarrow {V_2} = \dfrac{{10}}{{0.2}}$
$\Rightarrow {V_2} = 50c{m^3}$
Let the volume of load which is to be added be ${V_1}$, then in order to attain equilibrium, buoyant force $\left( {{F_B}} \right)$ has to be equal to the sum of weight of load and weight of cork$\left( {{W_2}} \right)$, that is
$\Rightarrow {F_B} = {W_1} + {W_2}$
Since the cork and load displace ${V_1} + {V_2}$ volume of water,
$\Rightarrow \left( {{V_1} + {V_2}} \right)\rho g = mg + {V_1}{\rho _1}g$
$\Rightarrow {V_1} + {V_2} = m + {V_1}{\rho _1}$
$\Rightarrow \left[ {\rho = 1g/cc} \right]$
$\Rightarrow {V_2} - m = {V_1}{\rho _1} - {V_1}$
$\Rightarrow {V_2} - m = {V_1}\left( {{\rho _1} - 1} \right)$
$\Rightarrow {V_1} = \dfrac{{{V_2} - m}}{{{\rho _1} - 1}}$
$\Rightarrow {V_1} = \dfrac{{50 - 10}}{{11 - 1}}$
$\Rightarrow {V_1} = \dfrac{{40}}{{10}}$
$\Rightarrow {V_1} = 4c{m^3}$
To calculate mass of the load to be added, ${m_1} = {\rho _1}{V_1}$
$\Rightarrow {m_1} = 11 \times 4$
$\Rightarrow {m_1} = 44g$
Therefore option B is correct.
Note: Buoyant force is an upward force exerted by the water displaced by the object. If the buoyant force is greater than or equal to the weight of the object, the object floats. If the buoyant force is less than the weight of the object, it sinks.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Charging and Discharging of Capacitor
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Mechanical Properties of Fluids Class 11 Notes: CBSE Physics Chapter 9
JEE Main Course 2025: Get All the Relevant Details
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry