![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
What is the luminous intensity of the sun if it produces the same illuminance on the earth as produced by a bulb of $10000cd$ at a distance of $0.3m$. The distance between the sun and the earth is $1.5 \times {10^{11}}m$.
(A) $2.5 \times {10^{23}}cd$
(B) $2.5 \times {10^{19}}cd$
(C) $2.5 \times {10^{27}}cd$
(D) $2.5 \times {10^{36}}cd$
Answer
125.1k+ views
Hint: We are given here with the luminous intensity of the bulb at a distance from the point and we are asked to find the luminous intensity of the sun at other distance but producing the same illuminance on the point as that of the bulb. Thus, we will use the formula for illuminance for both cases and then equate them.
Formulae Used
$\varepsilon = \dfrac{P}{{4\pi {d^2}}}$
Where, $\varepsilon $ is the illuminance, $P$ is the luminous intensity of the object and $d$ is the distance of the object from the illuminated point.
Step By Step Solution
Firstly,
For the bulb,
${\varepsilon _{Bulb}} = \dfrac{{{P_{Bulb}}}}{{4\pi {d_1}^2}}$
And, for the sun,
${\varepsilon _{Sun}} = \dfrac{{{P_{Sun}}}}{{4\pi {d_2}^2}}$
Now,
According to the question, we should equate ${\varepsilon _{Sun}} = {\varepsilon _{Bulb}}$
Thus, we get
$\dfrac{{{P_{Sun}}}}{{{d_2}^2}} = \dfrac{{{P_{Bulb}}}}{{{d_1}^2}}$
Now,
The given values are
${P_{Bulb}} = {10^4}cd$
${d_1} = 3 \times {10^{ - 1}}m$
${d_2} = 1.5 \times {10^{11}}m$
Putting in these values, we get
${P_{Sun}} = 2.5 \times {10^{27}}cd$
Hence, the answer is (C).
Additional Information
Luminous intensity is defined as a quantity which is used for characterizing a light source. It is further defined as the luminous flux per unit solid angle.
The S.I. Unit for luminous intensity is \[candela = lumen{\text{ }}per{\text{ }}steradian\]symbolized as $cd$.
Note: We equated the illuminance in both the cases as according to the question both the illumination due to the sun and bulb were the same. Further, we cancelled the common terms and finally came up with a relation in which all of the given parameters got connected with each other and thus we can solve the question with ease.
Formulae Used
$\varepsilon = \dfrac{P}{{4\pi {d^2}}}$
Where, $\varepsilon $ is the illuminance, $P$ is the luminous intensity of the object and $d$ is the distance of the object from the illuminated point.
Step By Step Solution
Firstly,
For the bulb,
${\varepsilon _{Bulb}} = \dfrac{{{P_{Bulb}}}}{{4\pi {d_1}^2}}$
And, for the sun,
${\varepsilon _{Sun}} = \dfrac{{{P_{Sun}}}}{{4\pi {d_2}^2}}$
Now,
According to the question, we should equate ${\varepsilon _{Sun}} = {\varepsilon _{Bulb}}$
Thus, we get
$\dfrac{{{P_{Sun}}}}{{{d_2}^2}} = \dfrac{{{P_{Bulb}}}}{{{d_1}^2}}$
Now,
The given values are
${P_{Bulb}} = {10^4}cd$
${d_1} = 3 \times {10^{ - 1}}m$
${d_2} = 1.5 \times {10^{11}}m$
Putting in these values, we get
${P_{Sun}} = 2.5 \times {10^{27}}cd$
Hence, the answer is (C).
Additional Information
Luminous intensity is defined as a quantity which is used for characterizing a light source. It is further defined as the luminous flux per unit solid angle.
The S.I. Unit for luminous intensity is \[candela = lumen{\text{ }}per{\text{ }}steradian\]symbolized as $cd$.
Note: We equated the illuminance in both the cases as according to the question both the illumination due to the sun and bulb were the same. Further, we cancelled the common terms and finally came up with a relation in which all of the given parameters got connected with each other and thus we can solve the question with ease.
Recently Updated Pages
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Energetics Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE General Topics in Chemistry Important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)