Answer
Verified
110.4k+ views
Hint:To answer this question, you need to know what magnetic moment is and what all are the factors affecting magnetic moment. Recall what magnetic moment indicates and how it is measured. This question is based on the basics of magnetism and measures your knowledge in magnetism.
Formula Used:
We have an equation for magnetic dipole moment of a loop as:
$\mu =IA$
Where I is the current carried by the loop and A is the area of the loop.
Complete answer:
Magnetic dipole moment is also called magnetic moment. It measures the tendency of an object to align in a magnetic field. It is produced due to the spin angular moment of electrons or due to motion of electrons in a closed loop.
From the equation of magnetic dipole moment, it is clear that magnetic dipole moment is directly proportional to current in loop and to area of the loop. Therefore, we can eliminate option (A) and option (B).
We know that area is a vector quantity and direction of area vector is always perpendicular to the plane of the loop. Therefore, we can say that the magnetic dipole moment of a current carrying loop is directly proportional to the magnitude of area and it will have the same direction as that of the area vector since current is a scalar quantity and magnetic dipole moment is a vector quantity.
Therefore, the answer is option (D)
Thus, the correct option is D.
Note:Current does have both the magnitude and direction but it is considered as scalar quantity since it doesn’t obey the vector law of addition. That is why we don’t consider the direction of current when we say the direction of the magnetic dipole moment.
Formula Used:
We have an equation for magnetic dipole moment of a loop as:
$\mu =IA$
Where I is the current carried by the loop and A is the area of the loop.
Complete answer:
Magnetic dipole moment is also called magnetic moment. It measures the tendency of an object to align in a magnetic field. It is produced due to the spin angular moment of electrons or due to motion of electrons in a closed loop.
From the equation of magnetic dipole moment, it is clear that magnetic dipole moment is directly proportional to current in loop and to area of the loop. Therefore, we can eliminate option (A) and option (B).
We know that area is a vector quantity and direction of area vector is always perpendicular to the plane of the loop. Therefore, we can say that the magnetic dipole moment of a current carrying loop is directly proportional to the magnitude of area and it will have the same direction as that of the area vector since current is a scalar quantity and magnetic dipole moment is a vector quantity.
Therefore, the answer is option (D)
Thus, the correct option is D.
Note:Current does have both the magnitude and direction but it is considered as scalar quantity since it doesn’t obey the vector law of addition. That is why we don’t consider the direction of current when we say the direction of the magnetic dipole moment.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main