
What will be maximum value of ${\text{3cos}}\theta {\text{ + 4sin}}\theta $
$
\left( a \right){\text{ - 5}} \\
\left( b \right){\text{ 5}} \\
\left( c \right){\text{ 25}} \\
\left( d \right){\text{ None of these}} \\
$
Answer
232.8k+ views
Hint-Use the concept of maxima and minima.Highest and lowest point is generally the maxima and minima of a graph.
Here we have to find the maximum value of ${\text{3cos}}\theta {\text{ + 4sin}}\theta $
So let ${\text{f}}\left( \theta \right) = {\text{3cos}}\theta {\text{ + 4sin}}\theta $
Now our first derivative ${{\text{f}}^1}\left( \theta \right) = - 3\sin \theta + 4\cos \theta $
Now double differentiating it we get ${{\text{f}}^{11}}\left( \theta \right) = - 3\cos \theta - 4\sin \theta $
In order to find max and min value we have to make ${{\text{f}}^1}\left( \theta \right) = 0$
Hence ${\text{ - 3sin}}\theta {\text{ + 4cos}}\theta {\text{ = 0}}$
On solving above we get ${\text{tan}}\theta {\text{ = }}\dfrac{4}{3}$
As we know that ${\text{tan}}\theta {\text{ = }}\dfrac{P}{H}$
Hence our ${\text{sin}}\theta {\text{ = }}\dfrac{4}{5}{\text{ and cos}}\theta {\text{ = }}\dfrac{3}{5}$
Now for this value of ${\text{sin}}\theta {\text{ and cos}}\theta $, the value of double derivative of $f(\theta ) $should be less than zero as we have to find maximum value of the expression.
${{\text{f}}^{11}}\left( \theta \right) < 0$
$ - 3\cos \theta - 4\sin \theta < 0$
Putting the values
$ - 3\left( {\dfrac{3}{5}} \right) - 4\left( {\dfrac{4}{5}} \right) < 0$
So max value of
${\text{3cos}}\theta {\text{ + 4sin}}\theta = 3 \times \left( {\dfrac{3}{5}} \right) + 4 \times \left( {\dfrac{4}{5}} \right)$
$ = \dfrac{{25}}{5}$Which is equal to 5
Hence option (b) is the right answer.
Note- Whenever we face such a problem the key concept that we need to use is that we always put the first derivative equal to 0 to obtain the values. Now double differentiate and cross verify that whether the value obtained corresponds to maximum or minimum for the function. This helps in reaching the right answer.
Here we have to find the maximum value of ${\text{3cos}}\theta {\text{ + 4sin}}\theta $
So let ${\text{f}}\left( \theta \right) = {\text{3cos}}\theta {\text{ + 4sin}}\theta $
Now our first derivative ${{\text{f}}^1}\left( \theta \right) = - 3\sin \theta + 4\cos \theta $
Now double differentiating it we get ${{\text{f}}^{11}}\left( \theta \right) = - 3\cos \theta - 4\sin \theta $
In order to find max and min value we have to make ${{\text{f}}^1}\left( \theta \right) = 0$
Hence ${\text{ - 3sin}}\theta {\text{ + 4cos}}\theta {\text{ = 0}}$
On solving above we get ${\text{tan}}\theta {\text{ = }}\dfrac{4}{3}$
As we know that ${\text{tan}}\theta {\text{ = }}\dfrac{P}{H}$
Hence our ${\text{sin}}\theta {\text{ = }}\dfrac{4}{5}{\text{ and cos}}\theta {\text{ = }}\dfrac{3}{5}$
Now for this value of ${\text{sin}}\theta {\text{ and cos}}\theta $, the value of double derivative of $f(\theta ) $should be less than zero as we have to find maximum value of the expression.
${{\text{f}}^{11}}\left( \theta \right) < 0$
$ - 3\cos \theta - 4\sin \theta < 0$
Putting the values
$ - 3\left( {\dfrac{3}{5}} \right) - 4\left( {\dfrac{4}{5}} \right) < 0$
So max value of
${\text{3cos}}\theta {\text{ + 4sin}}\theta = 3 \times \left( {\dfrac{3}{5}} \right) + 4 \times \left( {\dfrac{4}{5}} \right)$
$ = \dfrac{{25}}{5}$Which is equal to 5
Hence option (b) is the right answer.
Note- Whenever we face such a problem the key concept that we need to use is that we always put the first derivative equal to 0 to obtain the values. Now double differentiate and cross verify that whether the value obtained corresponds to maximum or minimum for the function. This helps in reaching the right answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

