
When mercury (II) chloride is treated with excess of stannous chloride, the products obtained are ---- respectively.
A. liquid Hg and $SnC{l_4}$
B. $H{g_2}C{l_2}$ and $SnC{l_4}$
C. $H{g_2}C{l_2}$ and ${[SnC{l_4}]^{2 - }}$
D. liquid Hg and ${[SnC{l_4}]^{2 - }}$
Answer
224.7k+ views
Hint: Here we recall oxidation and reduction reaction. Reaction between mercury (II) chloride and stannous chloride will be a redox reaction. In redox reaction one reactant acts as oxidizing agent and another reactant acts as reducing agent.
Complete step by step answer:
Oxidation reaction: loss of electrons is known as oxidation. A species undergoing oxidation is known as a reducing agent.
Reduction reaction: gain of electrons is known as reduction. A species undergoing reduction is known as oxidizing agent.
In this reaction, Mercuric chloride oxidises stannous chloride to stannic chloride and itself get reduced to mercurous chloride. Mercury has an oxidation state of +1 in mercurous chloride. $2HgC{l_2}{\text{ + SnC}}{{\text{l}}_2}{\text{ }} \to {\text{ H}}{{\text{g}}_2}C{l_2}{\text{ + SnC}}{{\text{l}}_4}$ . Mercurous chloride is further reduced to metallic mercury, when it reacts with excess of stannous chloride. Mercury chloride gets reduced to mercury and acts as an oxidising agent. Stannous chloride gets oxidized to stannic chloride and acts as a reducing agent. $H{g_2}C{l_2}{\text{ + SnC}}{{\text{l}}_2}{\text{ }} \to {\text{ 2H}}{{\text{g}}_{(l)}}{\text{ + SnC}}{{\text{l}}_4}$ .
Hence, correct answer is (A)
Additional information: Stannous chloride is used to reduce dissolved divalent mercury to elementary mercury. The dissolved elementary mercury then stripped from solution by air sparging. Reaction between Mercuric chloride and stannous chloride is a redox reaction and it is a spontaneous reaction. Spontaneous reaction proceeds by itself without any external support. Mercury has +2 oxidation state in mercuric chloride, +1 oxidation state in mercurous chloride and zero oxidation state in metallic mercury. Mercury is a liquid metal at room temperature.
Note:
Mercuric chloride is obtained by the action of chlorine on mercury or mercury chloride. It can also be produced by the addition of hydrochloric acid to a hot, concentrated solution of mercury(I) compounds such as the nitrate. \[{\text{H}}{{\text{g}}_{\text{2}}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}{\text{ + 4HCl }} \to {\text{ 2HgC}}{{\text{l}}_{\text{2}}}{\text{\; + 2}}{{\text{H}}_{\text{2}}}{\text{O + 2N}}{{\text{O}}_{\text{2}}}\] .
Complete step by step answer:
Oxidation reaction: loss of electrons is known as oxidation. A species undergoing oxidation is known as a reducing agent.
Reduction reaction: gain of electrons is known as reduction. A species undergoing reduction is known as oxidizing agent.
In this reaction, Mercuric chloride oxidises stannous chloride to stannic chloride and itself get reduced to mercurous chloride. Mercury has an oxidation state of +1 in mercurous chloride. $2HgC{l_2}{\text{ + SnC}}{{\text{l}}_2}{\text{ }} \to {\text{ H}}{{\text{g}}_2}C{l_2}{\text{ + SnC}}{{\text{l}}_4}$ . Mercurous chloride is further reduced to metallic mercury, when it reacts with excess of stannous chloride. Mercury chloride gets reduced to mercury and acts as an oxidising agent. Stannous chloride gets oxidized to stannic chloride and acts as a reducing agent. $H{g_2}C{l_2}{\text{ + SnC}}{{\text{l}}_2}{\text{ }} \to {\text{ 2H}}{{\text{g}}_{(l)}}{\text{ + SnC}}{{\text{l}}_4}$ .
Hence, correct answer is (A)
Additional information: Stannous chloride is used to reduce dissolved divalent mercury to elementary mercury. The dissolved elementary mercury then stripped from solution by air sparging. Reaction between Mercuric chloride and stannous chloride is a redox reaction and it is a spontaneous reaction. Spontaneous reaction proceeds by itself without any external support. Mercury has +2 oxidation state in mercuric chloride, +1 oxidation state in mercurous chloride and zero oxidation state in metallic mercury. Mercury is a liquid metal at room temperature.
Note:
Mercuric chloride is obtained by the action of chlorine on mercury or mercury chloride. It can also be produced by the addition of hydrochloric acid to a hot, concentrated solution of mercury(I) compounds such as the nitrate. \[{\text{H}}{{\text{g}}_{\text{2}}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}{\text{ + 4HCl }} \to {\text{ 2HgC}}{{\text{l}}_{\text{2}}}{\text{\; + 2}}{{\text{H}}_{\text{2}}}{\text{O + 2N}}{{\text{O}}_{\text{2}}}\] .
Recently Updated Pages
JEE Mains 2026: Exam Dates and City Intimation slip OUT, Registration Open, Syllabus & Eligibility

JEE Main Candidate Login 2026 and Registration Portal | Form Access

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

Half Life of Zero Order Reaction for JEE

Understanding Displacement and Velocity Time Graphs

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Other Pages
JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding How a Current Loop Acts as a Magnetic Dipole

New Year's Day 2026: Significance, History, and How to Celebrate in India

Happy New Year 2026 Wishes – 100+ English, Hindi, Tamil, Bengali, Telugu Wishes, Quotes, Shayari, Status & Greetings

