Monochromatic light of wavelength 667 nm is produced by a helium neon laser. The power emitted is 9mW. The number of photos arriving per sec. on the average at a target irradiated by this beam is:
A) $3 \times {10^{19}}$
B) $9 \times {10^{17}}$
C) $3 \times {10^{16}}$
D) $3 \times {10^{15}}$
Answer
Verified
122.7k+ views
Hint: The concept of photon originates from Planck-Einstein's relation, which is the most fundamental concept in quantum mechanics. The Planck’s relation must be applied directly to calculate the number of photons.
Complete step by step solution:
The light energy was originally considered to be in the form of straight rays. Later, several experiments showed different phenomena of light behaving as a wave such as interference, diffraction and polarisation.
However, the light wave was originally believed to be a continuous wave. It was not until Einstein’s photoelectric effect experiment that they discovered that the light wave is not continuous. Einstein’s hypothesis proved that light energy is transferred in discrete packets of energy wherein each packet has the energy equivalent to its frequency.
Energy possessed by a photon,
$E \propto \upsilon $
where $\upsilon $ = frequency of light.
By removing proportionality and introducing the Planck’s constant, we obtain an expression known as the Planck-Einstein relation given by –
$E = h\upsilon $
where h = Planck’s constant whose value is equal to $6. 626 \times {10^{ - 34}}J{s^{ - 1}}$
Light travels at a constant velocity of $c = 3 \times {10^8}m{s^{ - 1}}$ . Since we have considered the light as a wave, the velocity of the wave is equal to the product of frequency and wavelength of the wave.
$c = \upsilon \lambda $
Thus, we have –
\[E = \dfrac{{hc}}{\lambda }\]
This is the energy possessed by one photon of light. When a monochromatic light of wavelength 667 nm gives rise to $n$ photons, the power emitted is given by, -
\[E = n\dfrac{{hc}}{\lambda }\]
Thus, the number of photons emitted is given by –
$n = \dfrac{E}{{\left( {\dfrac{{hc}}{\lambda }} \right)}}$
Given,
Power emitted, $E = 9mW = 9 \times {10^{ - 3}}W$
Wavelength of light, $\lambda = 667 \times {10^{ - 9}}m$
Substituting the values of the above values and the constants, we obtain –
$n = \dfrac{{9 \times {{10}^{ - 3}}}}{{\left( {\dfrac{{6. 626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{667 \times {{10}^{ - 9}}}}} \right)}}$
$ \Rightarrow n = \dfrac{{9 \times {{10}^{ - 3}} \times 667 \times {{10}^{ - 9}}}}{{6. 626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}$
$ \Rightarrow n = \dfrac{{6003 \times {{10}^{ - 12}}}}{{19. 878 \times {{10}^{ - 26}}}}$
$ \Rightarrow n = 301. 99 \times {10^{26 - 12}}$
$ \Rightarrow n = 301. 99 \times {10^{14}}$
$ \Rightarrow n = 3. 0199 \times {10^{16}} \approx 3 \times {10^{16}}$
Therefore, the number of photons emitted per second is equal to $3 \times {10^{16}}$.
Note: The students might get confused here, since I have considered the energy as watt while the unit of energy must be clearly joule. However, that is permitted in this problem, since they are asking the number of photons emitted per second. Since they are asking the rate of photons emitted per second, we can consider the units of power as units of energy in our solution.
Complete step by step solution:
The light energy was originally considered to be in the form of straight rays. Later, several experiments showed different phenomena of light behaving as a wave such as interference, diffraction and polarisation.
However, the light wave was originally believed to be a continuous wave. It was not until Einstein’s photoelectric effect experiment that they discovered that the light wave is not continuous. Einstein’s hypothesis proved that light energy is transferred in discrete packets of energy wherein each packet has the energy equivalent to its frequency.
Energy possessed by a photon,
$E \propto \upsilon $
where $\upsilon $ = frequency of light.
By removing proportionality and introducing the Planck’s constant, we obtain an expression known as the Planck-Einstein relation given by –
$E = h\upsilon $
where h = Planck’s constant whose value is equal to $6. 626 \times {10^{ - 34}}J{s^{ - 1}}$
Light travels at a constant velocity of $c = 3 \times {10^8}m{s^{ - 1}}$ . Since we have considered the light as a wave, the velocity of the wave is equal to the product of frequency and wavelength of the wave.
$c = \upsilon \lambda $
Thus, we have –
\[E = \dfrac{{hc}}{\lambda }\]
This is the energy possessed by one photon of light. When a monochromatic light of wavelength 667 nm gives rise to $n$ photons, the power emitted is given by, -
\[E = n\dfrac{{hc}}{\lambda }\]
Thus, the number of photons emitted is given by –
$n = \dfrac{E}{{\left( {\dfrac{{hc}}{\lambda }} \right)}}$
Given,
Power emitted, $E = 9mW = 9 \times {10^{ - 3}}W$
Wavelength of light, $\lambda = 667 \times {10^{ - 9}}m$
Substituting the values of the above values and the constants, we obtain –
$n = \dfrac{{9 \times {{10}^{ - 3}}}}{{\left( {\dfrac{{6. 626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{667 \times {{10}^{ - 9}}}}} \right)}}$
$ \Rightarrow n = \dfrac{{9 \times {{10}^{ - 3}} \times 667 \times {{10}^{ - 9}}}}{{6. 626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}$
$ \Rightarrow n = \dfrac{{6003 \times {{10}^{ - 12}}}}{{19. 878 \times {{10}^{ - 26}}}}$
$ \Rightarrow n = 301. 99 \times {10^{26 - 12}}$
$ \Rightarrow n = 301. 99 \times {10^{14}}$
$ \Rightarrow n = 3. 0199 \times {10^{16}} \approx 3 \times {10^{16}}$
Therefore, the number of photons emitted per second is equal to $3 \times {10^{16}}$.
Note: The students might get confused here, since I have considered the energy as watt while the unit of energy must be clearly joule. However, that is permitted in this problem, since they are asking the number of photons emitted per second. Since they are asking the rate of photons emitted per second, we can consider the units of power as units of energy in our solution.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main