Answer
Verified
112.5k+ views
Hint: To solve this question we should know what the mean square velocity for any molecule is. We can find the mean square velocity for molecules of type $A$ in different directions and then use the one in $X$ direction. We simply have to find the ratio of the mean square velocity of the two given types of molecules.
Formulae used:
${V^2}_{rms} = \dfrac{{3kT}}{m}$
Where ${V_{rms}}$ is the mean square velocity, $k$ is the Boltzmann constant, $T$ is the temperature and $m$ is the molecular mass.
Complete step by step answer:
To solve this question we should know what the mean square velocity for any molecule is. Root mean square velocity of any molecule can be defined as the square root of the mean of squares of the velocity of a gas molecules which can be given by
${V^2}_{rms} = \dfrac{{3kT}}{m}$
Where ${V_{rms}}$ is the mean square velocity, $k$ is the Boltzmann constant, $T$ is the temperature and $m$ is the molecular mass.
Also
${V^2}_{rms} = v_x^2 + v_y^2 + v_z^2$
Here ${V_{rms}}$ is the mean square velocity, ${v_x}$ is the velocity along $X$ direction, ${v_y}$ is the velocity along $Y$ direction and ${v_z}$ is the velocity along $Z$ direction.
As ${v_x} = {v_y} = {v_z}$,
$ \Rightarrow {V^2}_{rms} = 3v_x^2$
$ \Rightarrow v_x^2 = \dfrac{1}{3}{V^2}_{rms}$
In the question, the velocity along $X$ component of $A$ type is denoted by ${\omega ^2}$
$ \Rightarrow {\omega ^2} = \dfrac{1}{3}{V^2}_{rms}$
Putting the value of ${V_{rms}}$ we get,
$ \Rightarrow {\omega ^2} = \dfrac{1}{3}\dfrac{{3kT}}{m} = \dfrac{{kT}}{m}$
$ \Rightarrow {\omega ^2} = \dfrac{{kT}}{m}$
Mean square velocity of the molecules of type $B$, denoted by ${V^2}$ will be
\[ \Rightarrow {V^2}_{rms} = {V^2} = \dfrac{{3kT}}{{2m}}\]
\[ \therefore {V^2} = \dfrac{{3kT}}{{2m}}\]
So the ratio between mean square velocity of the molecules of type $B$ and the mean square velocity of the $X$ component of the velocity of $A$ type is,
$ \Rightarrow \dfrac{{{\omega ^2}}}{{{V^2}}} = \dfrac{{\dfrac{{kT}}{m}}}{{\dfrac{{3kT}}{{2m}}}} = \dfrac{2}{3}$
So option (D) is the correct answer.
Note: While solving questions for root mean square velocity, always use the correct formulae. The root mean square velocity is different from average velocity as it is the square root of the mean of squares of the velocity of a gas molecule whereas average velocity is simply the arithmetic average of all the velocities.
Formulae used:
${V^2}_{rms} = \dfrac{{3kT}}{m}$
Where ${V_{rms}}$ is the mean square velocity, $k$ is the Boltzmann constant, $T$ is the temperature and $m$ is the molecular mass.
Complete step by step answer:
To solve this question we should know what the mean square velocity for any molecule is. Root mean square velocity of any molecule can be defined as the square root of the mean of squares of the velocity of a gas molecules which can be given by
${V^2}_{rms} = \dfrac{{3kT}}{m}$
Where ${V_{rms}}$ is the mean square velocity, $k$ is the Boltzmann constant, $T$ is the temperature and $m$ is the molecular mass.
Also
${V^2}_{rms} = v_x^2 + v_y^2 + v_z^2$
Here ${V_{rms}}$ is the mean square velocity, ${v_x}$ is the velocity along $X$ direction, ${v_y}$ is the velocity along $Y$ direction and ${v_z}$ is the velocity along $Z$ direction.
As ${v_x} = {v_y} = {v_z}$,
$ \Rightarrow {V^2}_{rms} = 3v_x^2$
$ \Rightarrow v_x^2 = \dfrac{1}{3}{V^2}_{rms}$
In the question, the velocity along $X$ component of $A$ type is denoted by ${\omega ^2}$
$ \Rightarrow {\omega ^2} = \dfrac{1}{3}{V^2}_{rms}$
Putting the value of ${V_{rms}}$ we get,
$ \Rightarrow {\omega ^2} = \dfrac{1}{3}\dfrac{{3kT}}{m} = \dfrac{{kT}}{m}$
$ \Rightarrow {\omega ^2} = \dfrac{{kT}}{m}$
Mean square velocity of the molecules of type $B$, denoted by ${V^2}$ will be
\[ \Rightarrow {V^2}_{rms} = {V^2} = \dfrac{{3kT}}{{2m}}\]
\[ \therefore {V^2} = \dfrac{{3kT}}{{2m}}\]
So the ratio between mean square velocity of the molecules of type $B$ and the mean square velocity of the $X$ component of the velocity of $A$ type is,
$ \Rightarrow \dfrac{{{\omega ^2}}}{{{V^2}}} = \dfrac{{\dfrac{{kT}}{m}}}{{\dfrac{{3kT}}{{2m}}}} = \dfrac{2}{3}$
So option (D) is the correct answer.
Note: While solving questions for root mean square velocity, always use the correct formulae. The root mean square velocity is different from average velocity as it is the square root of the mean of squares of the velocity of a gas molecule whereas average velocity is simply the arithmetic average of all the velocities.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line