
Non-metallic oxides are:
(A) Acidic in nature
(B) Amphoteric in nature
(C) Basic in nature
(D) None of these
Answer
225.9k+ views
Hint: Non-metal oxides such as sulphur dioxide and nitrogen oxide are responsible for acid rain. Using this application of non-metal oxides, try and determine their nature.
Step-by-Step Solution:
Let us first analyse what non-metallic oxides really are before moving on towards the specifics of this question.
All non-metals form covalent oxides with oxygen, which react with water to form acids or with bases to form salts. Most non-metal oxides are acidic and form oxyacids, which in turn yield hydronium ions (\[{{H}_{3}}{{O}^{+}}\]) in aqueous solution. There are two general statements that describe the behaviour of acidic oxides. First, oxides such as sulphur trioxide (\[S{{O}_{3}}\]) and dinitrogen pentoxide (\[{{N}_{2}}{{O}_{5}}\]), in which the non-metal exhibits one of its common oxidation numbers, are known as acid anhydrides. These oxides react with water to form oxyacids, with no change in the oxidation number of the non-metal; for example,
\[{{N}_{2}}{{O}_{5}}~+\text{ }{{H}_{2}}O\to 2HN{{O}_{3}}\]
The non-metal oxides can be neutralized with a base to form salt and water.
\[Non-Metal\text{ }Oxide\text{ }+\text{ }Base~\to ~Salt\text{ }+\text{ }Water\]
For example,
$\begin{matrix}
S{{O}_{3(g)}}~+\text{ }Ba{{\left( OH \right)}_{2(aq)}}~\to ~BaS{{O}_{4(aq)}}~+\text{ }{{H}_{2}}{{O}_{(l)}} \\
{{P}_{4}}{{O}_{10(s)}}~+\text{ }12\text{ }NaO{{H}_{(aq)}}~\to ~4\text{ }N{{a}_{3}}P{{O}_{4(aq)}}~+\text{ }6\text{ }{{H}_{2}}{{O}_{(l)}} \\
\end{matrix}$
Generally, the more metallic character an element has, the more basic its oxide will be. Likewise, the more non-metallic character an element has, the more acidic its oxide will be. The non-metallic character of an element can be determined by its position on the periodic table:


Therefore, per our analysis, the answer to this question is a) Acidic in nature
Note: Most non-metal oxides are acidic, but not all. For example, carbon monoxide (CO) is not acidic.
The addition of water to a non-metal oxide results in a compound that consists of a non-metal atom surrounded by oxo (=O) and hydroxy (-OH) groups. For example,
\[S{{O}_{3\left( l \right)}}\text{ }+\text{ }{{H}_{2}}{{O}_{\left( l \right)}}\text{ }\to \text{ }{{H}_{2}}S{{O}_{4\left( l \right)}}\]
Step-by-Step Solution:
Let us first analyse what non-metallic oxides really are before moving on towards the specifics of this question.
All non-metals form covalent oxides with oxygen, which react with water to form acids or with bases to form salts. Most non-metal oxides are acidic and form oxyacids, which in turn yield hydronium ions (\[{{H}_{3}}{{O}^{+}}\]) in aqueous solution. There are two general statements that describe the behaviour of acidic oxides. First, oxides such as sulphur trioxide (\[S{{O}_{3}}\]) and dinitrogen pentoxide (\[{{N}_{2}}{{O}_{5}}\]), in which the non-metal exhibits one of its common oxidation numbers, are known as acid anhydrides. These oxides react with water to form oxyacids, with no change in the oxidation number of the non-metal; for example,
\[{{N}_{2}}{{O}_{5}}~+\text{ }{{H}_{2}}O\to 2HN{{O}_{3}}\]
The non-metal oxides can be neutralized with a base to form salt and water.
\[Non-Metal\text{ }Oxide\text{ }+\text{ }Base~\to ~Salt\text{ }+\text{ }Water\]
For example,
$\begin{matrix}
S{{O}_{3(g)}}~+\text{ }Ba{{\left( OH \right)}_{2(aq)}}~\to ~BaS{{O}_{4(aq)}}~+\text{ }{{H}_{2}}{{O}_{(l)}} \\
{{P}_{4}}{{O}_{10(s)}}~+\text{ }12\text{ }NaO{{H}_{(aq)}}~\to ~4\text{ }N{{a}_{3}}P{{O}_{4(aq)}}~+\text{ }6\text{ }{{H}_{2}}{{O}_{(l)}} \\
\end{matrix}$
Generally, the more metallic character an element has, the more basic its oxide will be. Likewise, the more non-metallic character an element has, the more acidic its oxide will be. The non-metallic character of an element can be determined by its position on the periodic table:


Therefore, per our analysis, the answer to this question is a) Acidic in nature
Note: Most non-metal oxides are acidic, but not all. For example, carbon monoxide (CO) is not acidic.
The addition of water to a non-metal oxide results in a compound that consists of a non-metal atom surrounded by oxo (=O) and hydroxy (-OH) groups. For example,
\[S{{O}_{3\left( l \right)}}\text{ }+\text{ }{{H}_{2}}{{O}_{\left( l \right)}}\text{ }\to \text{ }{{H}_{2}}S{{O}_{4\left( l \right)}}\]
Recently Updated Pages
JEE Mains 2026: Exam Dates and City Intimation slip OUT, Registration Open, Syllabus & Eligibility

JEE Main Candidate Login 2026 and Registration Portal | Form Access

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

AP EAPCET 2026 Exam Dates (OUT), Eligibility, Syllabus, Result, and Counselling

JEE Main 2026 Exam Pattern Released: Total Questions, and Marks, and Marking Scheme

JEE Main 2026 Admit Card Release Date, Exam Dates, & Download Link

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Average and RMS Value in Electrical Circuits

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding How a Current Loop Acts as a Magnetic Dipole

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Keys & Solutions

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Half Life of Zero Order Reaction for JEE

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

