Answer
Verified
114.9k+ views
Hint: In order to solve this question, we will first find the escape velocity for both the planets A and B using the general formula of escape velocity and then we will find the ratio of the escape velocity of planets A and B and then compare with the given form to solve for the value of n.
Formula used:
The escape velocity for a planet is given by:
$v = \sqrt {\dfrac{{2GM}}{R}} $
Where, G is the gravitational constant, M is the mass of the Planet and R is the radius of the planet.
Complete answer:
We have given that, mass of the planet A is M and its radius is R then its escape velocity is calculated as ${v_A} = \sqrt {\dfrac{{2GM}}{R}} \to (i)$ and for planet B, let its mass is M’ then according to the question $M' = \dfrac{M}{2}$ and let its Radius is R’ then $R' = \dfrac{R}{2}$ so its escape velocity is given by:
${v_B} = \sqrt {\dfrac{{2G'M'}}{{R'}}} $
$
{v_B} = \sqrt {\dfrac{{2G\dfrac{M}{2}}}{{\dfrac{R}{2}}}} \\
{v_B} = \sqrt {\dfrac{{2GM}}{R}} \to (ii) \\
$
On dividing equations (i) and (ii) we get,
$\dfrac{{{v_A}}}{{{v_B}}} = 1$
Now, comparing this value with given form $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ we get,
$
\dfrac{n}{4} = 1 \\
\Rightarrow n = 4 \\
$
Hence, the correct option is (C) $4$.
Note: It should be remembered that escape velocity is the minimum velocity needed for an object to escape the gravitational field effect of any planet, star or any celestial object, and escape velocity is independent of the mass of the object, it only depends upon Radius and mass of the planet.
Formula used:
The escape velocity for a planet is given by:
$v = \sqrt {\dfrac{{2GM}}{R}} $
Where, G is the gravitational constant, M is the mass of the Planet and R is the radius of the planet.
Complete answer:
We have given that, mass of the planet A is M and its radius is R then its escape velocity is calculated as ${v_A} = \sqrt {\dfrac{{2GM}}{R}} \to (i)$ and for planet B, let its mass is M’ then according to the question $M' = \dfrac{M}{2}$ and let its Radius is R’ then $R' = \dfrac{R}{2}$ so its escape velocity is given by:
${v_B} = \sqrt {\dfrac{{2G'M'}}{{R'}}} $
$
{v_B} = \sqrt {\dfrac{{2G\dfrac{M}{2}}}{{\dfrac{R}{2}}}} \\
{v_B} = \sqrt {\dfrac{{2GM}}{R}} \to (ii) \\
$
On dividing equations (i) and (ii) we get,
$\dfrac{{{v_A}}}{{{v_B}}} = 1$
Now, comparing this value with given form $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ we get,
$
\dfrac{n}{4} = 1 \\
\Rightarrow n = 4 \\
$
Hence, the correct option is (C) $4$.
Note: It should be remembered that escape velocity is the minimum velocity needed for an object to escape the gravitational field effect of any planet, star or any celestial object, and escape velocity is independent of the mass of the object, it only depends upon Radius and mass of the planet.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs