
Planet A has mass M and radius R. Planet B has half the mass and half the radius of planet A. If the escape velocities from the planets A and B are \[{v_A}\] and ${v_B}$ respectively, then $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ ,The value of n is
(A) $3$
(B) $2$
(C) $4$
(D) $5$
Answer
127.8k+ views
Hint: In order to solve this question, we will first find the escape velocity for both the planets A and B using the general formula of escape velocity and then we will find the ratio of the escape velocity of planets A and B and then compare with the given form to solve for the value of n.
Formula used:
The escape velocity for a planet is given by:
$v = \sqrt {\dfrac{{2GM}}{R}} $
Where, G is the gravitational constant, M is the mass of the Planet and R is the radius of the planet.
Complete answer:
We have given that, mass of the planet A is M and its radius is R then its escape velocity is calculated as ${v_A} = \sqrt {\dfrac{{2GM}}{R}} \to (i)$ and for planet B, let its mass is M’ then according to the question $M' = \dfrac{M}{2}$ and let its Radius is R’ then $R' = \dfrac{R}{2}$ so its escape velocity is given by:
${v_B} = \sqrt {\dfrac{{2G'M'}}{{R'}}} $
$
{v_B} = \sqrt {\dfrac{{2G\dfrac{M}{2}}}{{\dfrac{R}{2}}}} \\
{v_B} = \sqrt {\dfrac{{2GM}}{R}} \to (ii) \\
$
On dividing equations (i) and (ii) we get,
$\dfrac{{{v_A}}}{{{v_B}}} = 1$
Now, comparing this value with given form $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ we get,
$
\dfrac{n}{4} = 1 \\
\Rightarrow n = 4 \\
$
Hence, the correct option is (C) $4$.
Note: It should be remembered that escape velocity is the minimum velocity needed for an object to escape the gravitational field effect of any planet, star or any celestial object, and escape velocity is independent of the mass of the object, it only depends upon Radius and mass of the planet.
Formula used:
The escape velocity for a planet is given by:
$v = \sqrt {\dfrac{{2GM}}{R}} $
Where, G is the gravitational constant, M is the mass of the Planet and R is the radius of the planet.
Complete answer:
We have given that, mass of the planet A is M and its radius is R then its escape velocity is calculated as ${v_A} = \sqrt {\dfrac{{2GM}}{R}} \to (i)$ and for planet B, let its mass is M’ then according to the question $M' = \dfrac{M}{2}$ and let its Radius is R’ then $R' = \dfrac{R}{2}$ so its escape velocity is given by:
${v_B} = \sqrt {\dfrac{{2G'M'}}{{R'}}} $
$
{v_B} = \sqrt {\dfrac{{2G\dfrac{M}{2}}}{{\dfrac{R}{2}}}} \\
{v_B} = \sqrt {\dfrac{{2GM}}{R}} \to (ii) \\
$
On dividing equations (i) and (ii) we get,
$\dfrac{{{v_A}}}{{{v_B}}} = 1$
Now, comparing this value with given form $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ we get,
$
\dfrac{n}{4} = 1 \\
\Rightarrow n = 4 \\
$
Hence, the correct option is (C) $4$.
Note: It should be remembered that escape velocity is the minimum velocity needed for an object to escape the gravitational field effect of any planet, star or any celestial object, and escape velocity is independent of the mass of the object, it only depends upon Radius and mass of the planet.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic
