Answer
Verified
99.9k+ views
Hint: Write the equation of the normal chord of the parabola in parametric form and apply the condition which relates the coordinates of the points at which the normal intersects the parabola. Find the midpoint of the points of intersection of normal to the parabola and solve it to get the locus of the parabola.
Complete step by step answer:
Let us consider a parabola \[{{y}^{2}}=4ax\]
We want to find the locus of midpoint of the normal chord of the parabola.
Let us consider the chord \[AB\] whose coordinates are of the form \[A(at_{1}^{2},2a{{t}_{1}})\] and \[B(at_{2}^{2},2a{{t}_{2}})\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
When a chord intersects normally to the parabola then the relation between the parameters of intersection points is \[{{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\] .
Substituting the above equation in the coordinates of point \[B(at_{2}^{2},2a{{t}_{2}})\] , we get \[B\left( a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}},2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right) \right)\] .
We know that the midpoint of any two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] .
Substituting \[{{x}_{1}}=at_{1}^{2},{{y}_{1}}=2a{{t}_{1}},{{x}_{2}}=at_{2}^{2},{{y}_{2}}=2a{{t}_{2}}\] in the above equation, we get \[\left( \dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2} \right)\] as the midpoint of chord \[AB\] .
Let’s assume that the midpoint of the chord \[AB\] is of the form \[\left( x,y \right)\] .
Thus, we have \[x=\dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},y=\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2}\] .
Solving the above equation, we have \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] and \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)\] .
Thus, we have \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)=\dfrac{-2a}{{{t}_{1}}}\] .
Rewriting the above equation, we have \[{{t}_{1}}=-\dfrac{2a}{y}\] .
Substituting the value \[{{t}_{1}}=-\dfrac{2a}{y}\] in the equation \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] , we have \[x=\dfrac{a}{2}\left( {{\left( -\dfrac{2a}{y} \right)}^{2}}+\dfrac{4}{{{\left( -\dfrac{2a}{y} \right)}^{2}}}+{{\left( -\dfrac{2a}{y} \right)}^{2}}+4 \right)\] .
Further simplifying the equation, we get \[x=\dfrac{a}{2}\left( \dfrac{4{{a}^{2}}}{{{y}^{2}}}+\dfrac{4}{\dfrac{4{{a}^{2}}}{{{y}^{2}}}}+\dfrac{4{{a}^{2}}}{{{y}^{2}}}+4 \right)\] .
By taking LCM and simplifying the terms, we get \[x=\left( \dfrac{4{{a}^{3}}}{{{y}^{2}}}+\dfrac{{{y}^{2}}}{2a}+2a \right)\]
\[\Rightarrow x=\dfrac{8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}}{2a{{y}^{2}}}\]
\[\Rightarrow 2ax{{y}^{2}}=8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}\]
\[\Rightarrow 8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}-2ax{{y}^{2}}=0\]
\[\Rightarrow {{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\]
Hence, the locus of midpoint of normal chord of the parabola is \[{{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\] .
Note: We can write the equation of normal of the parabola in slope form and find the point of intersection of normal with the parabola and find the midpoint to get the locus of the parabola.
Complete step by step answer:
Let us consider a parabola \[{{y}^{2}}=4ax\]
We want to find the locus of midpoint of the normal chord of the parabola.
Let us consider the chord \[AB\] whose coordinates are of the form \[A(at_{1}^{2},2a{{t}_{1}})\] and \[B(at_{2}^{2},2a{{t}_{2}})\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
When a chord intersects normally to the parabola then the relation between the parameters of intersection points is \[{{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\] .
Substituting the above equation in the coordinates of point \[B(at_{2}^{2},2a{{t}_{2}})\] , we get \[B\left( a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}},2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right) \right)\] .
We know that the midpoint of any two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] .
Substituting \[{{x}_{1}}=at_{1}^{2},{{y}_{1}}=2a{{t}_{1}},{{x}_{2}}=at_{2}^{2},{{y}_{2}}=2a{{t}_{2}}\] in the above equation, we get \[\left( \dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2} \right)\] as the midpoint of chord \[AB\] .
Let’s assume that the midpoint of the chord \[AB\] is of the form \[\left( x,y \right)\] .
Thus, we have \[x=\dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},y=\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2}\] .
Solving the above equation, we have \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] and \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)\] .
Thus, we have \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)=\dfrac{-2a}{{{t}_{1}}}\] .
Rewriting the above equation, we have \[{{t}_{1}}=-\dfrac{2a}{y}\] .
Substituting the value \[{{t}_{1}}=-\dfrac{2a}{y}\] in the equation \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] , we have \[x=\dfrac{a}{2}\left( {{\left( -\dfrac{2a}{y} \right)}^{2}}+\dfrac{4}{{{\left( -\dfrac{2a}{y} \right)}^{2}}}+{{\left( -\dfrac{2a}{y} \right)}^{2}}+4 \right)\] .
Further simplifying the equation, we get \[x=\dfrac{a}{2}\left( \dfrac{4{{a}^{2}}}{{{y}^{2}}}+\dfrac{4}{\dfrac{4{{a}^{2}}}{{{y}^{2}}}}+\dfrac{4{{a}^{2}}}{{{y}^{2}}}+4 \right)\] .
By taking LCM and simplifying the terms, we get \[x=\left( \dfrac{4{{a}^{3}}}{{{y}^{2}}}+\dfrac{{{y}^{2}}}{2a}+2a \right)\]
\[\Rightarrow x=\dfrac{8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}}{2a{{y}^{2}}}\]
\[\Rightarrow 2ax{{y}^{2}}=8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}\]
\[\Rightarrow 8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}-2ax{{y}^{2}}=0\]
\[\Rightarrow {{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\]
Hence, the locus of midpoint of normal chord of the parabola is \[{{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\] .
Note: We can write the equation of normal of the parabola in slope form and find the point of intersection of normal with the parabola and find the midpoint to get the locus of the parabola.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A block A slides over another block B which is placed class 11 physics JEE_Main
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main