
Quarter part of a transparent cylinder ABC of radius \[R\] is kept on a horizontal floor and a horizontal beam of light falls on the cylinder in the two different arrangements of the cylinder as shown in the figure (a) and (b). in arrangement (a) light converges at point D, which is at a distance \[2R/m\] from B and in arrangement (b) light converges at point E, which is at a distance \[2R/\left( {m - 1} \right)\] from C. find out the refractive index of the material.
(A)

(B)

Answer
127.5k+ views
Hint: Since the light rays are parallel to each other, then object distance can be regarded as infinity. The point of focus of the ray is the image distance.
Formula used: In this solution we will be using the following formulae;
\[\dfrac{n}{v} - \dfrac{1}{u} = \dfrac{{n - 1}}{R}\]where \[n\] is the refractive index of the glass, \[v\] is the image distance, and \[u\] is the object distance in the first case, \[R\] is the radius of the glass, this is a thick lens equation for light striking the curve surface the Plano-convex.
\[\dfrac{1}{v} - \dfrac{n}{u} = \dfrac{{1 - n}}{R}\] this is the thick lens equation for when incident light strikes the flat surface of a Plano-convex lens.
Complete Step-by-Step solution:
For the first case, the light is incident on the curve side, hence, the governing equation can be given be given by
\[\dfrac{n}{{{v_1}}} - \dfrac{1}{{{u_1}}} = \dfrac{{n - 1}}{R}\] where \[n\] is the refractive index of the glass, \[{v_1}\] is the image distance in the first case, and \[{u_1}\] is the object distance in the first case, \[R\] is the radius of the glass.
Since the light rays were parallel to each other, then the object distance can be regarded as infinity, hence
\[\dfrac{n}{{{v_1}}} - \dfrac{1}{\infty } = \dfrac{{n - 1}}{R}\]
\[ \Rightarrow \dfrac{n}{{{v_1}}} = \dfrac{{n - 1}}{R}\]
The point of convergence is the image distance, hence as given in question
\[\dfrac{n}{{\dfrac{{2R}}{m}}} = \dfrac{{n - 1}}{R}\]
Hence, by simplifying and cancelling \[R\] we have
\[mn = 2\left( {n - 1} \right)\]
For the second case, the light is incident on the flat part of the glass, hence, the governing equation is given by
\[\dfrac{1}{{{v_2}}} - \dfrac{n}{{{u_2}}} = \dfrac{{1 - n}}{R}\]
Hence, since light is parallel again, and the point of convergence is \[\dfrac{R}{{m - 1}}\], hence, by substitution, we have
\[\dfrac{1}{{\dfrac{R}{{m - 1}}}} - \dfrac{n}{\infty } = \dfrac{{1 - n}}{R}\]
By simplifying, we get
\[\dfrac{{m - 1}}{R} = \dfrac{{1 - n}}{{ - R}}\]
\[ \Rightarrow m - 1 = 1 - n\]
Then, we see that
\[m = 2 - n\]
Inserting this expression into the equation \[mn = 2\left( {n - 1} \right)\], we get
\[\left( {2 - n} \right)n = 2\left( {n - 1} \right)\]
\[ \Rightarrow 2n - {n^2} = 2n - 2\]
By cancelling and simplifying, we get
\[{n^2} = 2\]
\[ \Rightarrow n = 1.4\]
Note: For clarity, observe that the equation \[\dfrac{n}{v} - \dfrac{1}{u} = \dfrac{{n - 1}}{R}\], for example, is very similar to the lens maker equation \[\dfrac{1}{f} = n - 1\left( {\dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}} \right)\]. But since the surface is flat, we have that one of the radius be equal to infinity reducing the equation to \[\dfrac{1}{f} = n - 1\left( {\dfrac{1}{{{R_1}}}} \right)\] then \[\dfrac{1}{f}\] can be proven to be \[\dfrac{n}{v} - \dfrac{1}{u}\]. Similar case for the second equation.
Formula used: In this solution we will be using the following formulae;
\[\dfrac{n}{v} - \dfrac{1}{u} = \dfrac{{n - 1}}{R}\]where \[n\] is the refractive index of the glass, \[v\] is the image distance, and \[u\] is the object distance in the first case, \[R\] is the radius of the glass, this is a thick lens equation for light striking the curve surface the Plano-convex.
\[\dfrac{1}{v} - \dfrac{n}{u} = \dfrac{{1 - n}}{R}\] this is the thick lens equation for when incident light strikes the flat surface of a Plano-convex lens.
Complete Step-by-Step solution:
For the first case, the light is incident on the curve side, hence, the governing equation can be given be given by
\[\dfrac{n}{{{v_1}}} - \dfrac{1}{{{u_1}}} = \dfrac{{n - 1}}{R}\] where \[n\] is the refractive index of the glass, \[{v_1}\] is the image distance in the first case, and \[{u_1}\] is the object distance in the first case, \[R\] is the radius of the glass.
Since the light rays were parallel to each other, then the object distance can be regarded as infinity, hence
\[\dfrac{n}{{{v_1}}} - \dfrac{1}{\infty } = \dfrac{{n - 1}}{R}\]
\[ \Rightarrow \dfrac{n}{{{v_1}}} = \dfrac{{n - 1}}{R}\]
The point of convergence is the image distance, hence as given in question
\[\dfrac{n}{{\dfrac{{2R}}{m}}} = \dfrac{{n - 1}}{R}\]
Hence, by simplifying and cancelling \[R\] we have
\[mn = 2\left( {n - 1} \right)\]
For the second case, the light is incident on the flat part of the glass, hence, the governing equation is given by
\[\dfrac{1}{{{v_2}}} - \dfrac{n}{{{u_2}}} = \dfrac{{1 - n}}{R}\]
Hence, since light is parallel again, and the point of convergence is \[\dfrac{R}{{m - 1}}\], hence, by substitution, we have
\[\dfrac{1}{{\dfrac{R}{{m - 1}}}} - \dfrac{n}{\infty } = \dfrac{{1 - n}}{R}\]
By simplifying, we get
\[\dfrac{{m - 1}}{R} = \dfrac{{1 - n}}{{ - R}}\]
\[ \Rightarrow m - 1 = 1 - n\]
Then, we see that
\[m = 2 - n\]
Inserting this expression into the equation \[mn = 2\left( {n - 1} \right)\], we get
\[\left( {2 - n} \right)n = 2\left( {n - 1} \right)\]
\[ \Rightarrow 2n - {n^2} = 2n - 2\]
By cancelling and simplifying, we get
\[{n^2} = 2\]
\[ \Rightarrow n = 1.4\]
Note: For clarity, observe that the equation \[\dfrac{n}{v} - \dfrac{1}{u} = \dfrac{{n - 1}}{R}\], for example, is very similar to the lens maker equation \[\dfrac{1}{f} = n - 1\left( {\dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}} \right)\]. But since the surface is flat, we have that one of the radius be equal to infinity reducing the equation to \[\dfrac{1}{f} = n - 1\left( {\dfrac{1}{{{R_1}}}} \right)\] then \[\dfrac{1}{f}\] can be proven to be \[\dfrac{n}{v} - \dfrac{1}{u}\]. Similar case for the second equation.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Ideal and Non-Ideal Solutions Raoult's Law - JEE
