Rain drops fall with terminal velocity because
(A) Buoyancy
(B) Viscosity
(C) Low weight
(D) Surface tension
Answer
Verified
122.7k+ views
Hint: in the absence of all other external forces, all bodies accelerate to the ground at the same rate. Most internal forces are always acting.
Complete answer:
Generally, if we ignore all external forces, a rain drop accelerates and continues to accelerate until it it’s the ground due to the gravitational force of the earth attracting the raindrop. An effect of this attraction is the weight of the raindrop.
Surface tension is already turned on by now (i.e. it is acting on the molecules of the water) as it is an internal force. The very existence of a drop means that the surface tension is acting on the molecules of water. Recall that surface tension is due to the intermolecular forces between molecules which tend to give the shape of an uncontained liquid a spherical nature.
Now, if we consider that the atmosphere exerts forces on the raindrop. One is the buoyant force and the other is the viscous force. Buoyancy is dependent on the density of a body only and hence cannot allow a body to attain terminal velocity.
The viscous force is the force which is proportional to velocity and hence allows substance to attain terminal velocity when submerged in a fluid of different nature.
Hence, the correct option is B.
Note: For clarity, the viscous force allows substances to attain terminal velocity because, since it is dependent on velocity, when an object is accelerating under gravity, the velocity increases, hence the viscous force (acting upward opposite gravity) also increases. The speed of the object continues to increase (and so does the viscous force) until the viscous force becomes equal to the gravitational force. Hence, the net force is zero and the object will no longer accelerate and instead continues at the velocity at which the equality was attained until it hits the ground.
Complete answer:
Generally, if we ignore all external forces, a rain drop accelerates and continues to accelerate until it it’s the ground due to the gravitational force of the earth attracting the raindrop. An effect of this attraction is the weight of the raindrop.
Surface tension is already turned on by now (i.e. it is acting on the molecules of the water) as it is an internal force. The very existence of a drop means that the surface tension is acting on the molecules of water. Recall that surface tension is due to the intermolecular forces between molecules which tend to give the shape of an uncontained liquid a spherical nature.
Now, if we consider that the atmosphere exerts forces on the raindrop. One is the buoyant force and the other is the viscous force. Buoyancy is dependent on the density of a body only and hence cannot allow a body to attain terminal velocity.
The viscous force is the force which is proportional to velocity and hence allows substance to attain terminal velocity when submerged in a fluid of different nature.
Hence, the correct option is B.
Note: For clarity, the viscous force allows substances to attain terminal velocity because, since it is dependent on velocity, when an object is accelerating under gravity, the velocity increases, hence the viscous force (acting upward opposite gravity) also increases. The speed of the object continues to increase (and so does the viscous force) until the viscous force becomes equal to the gravitational force. Hence, the net force is zero and the object will no longer accelerate and instead continues at the velocity at which the equality was attained until it hits the ground.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line