
Range of resistivity for metals is?
(A)${10^{ - 6}}\Omega m$ to ${10^{ - 4}}\Omega m$
(B) ${10^{ - 7}}\Omega m$ to ${10^{ - 5}}\Omega m$
(C) ${10^{ - 8}}\Omega m$to ${10^{ - 6}}\Omega m$
(D) ${10^{ - 9}}\Omega m$ to ${10^{ - 7}}\Omega m$
Answer
233.1k+ views
Hint: Metals are good conductors of electricity, hence they have smaller resistivity compared to nonmetals and metalloids. The accurate answer to this question can’t be found using logic. The answer to this question must be remembered.
Complete step by step solution:
This is a fact-based question so one must remember that the range of resistivity for metals is ${10^{ - 8}}\Omega m$ to ${10^{ - 6}}\Omega m$.
Hence, the correct answer is option (C) ${10^{ - 8}}\Omega m$to ${10^{ - 6}}\Omega m$.
Additional information:
Resistivity is the property of a material that depicts how strongly it resists the flow of electrons through it.
A conductor is a type of material that allows the flow of charge (electric current) in one or more directions as electrons are loosely bonded to the atom. Materials made of metal are common electric conductors.
An electric insulator is a material in which the electron does not flow freely as it has its electrons tightly bonded to the atoms; a very small amount of current will flow through it under the influence of an electric field.
The range of resistivity of an insulator is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
There’s one more type of material known as semiconductor ${10^{12}}\Omega m$ to ${10^{20}}\Omega m$
The semiconductor material is a material that has an electric resistivity value lying between that of a conductor, such as metallic copper, and an insulator, such as wood. Its resistivity falls as its temperature rises which are opposite to that of metals as in them as the temperature increases the number of charge carriers also increases leading to less resistivity.
The range of resistivity of semiconductors is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
Note:
The order of resistivity of metal, nonmetal, and semiconductor is in the order of insulator>semiconductor>metal. This all happens due to the atom’s ability to bind the electron; this determines the energy in the atom that prevents the electron from moving under an external electric field.
Complete step by step solution:
This is a fact-based question so one must remember that the range of resistivity for metals is ${10^{ - 8}}\Omega m$ to ${10^{ - 6}}\Omega m$.
Hence, the correct answer is option (C) ${10^{ - 8}}\Omega m$to ${10^{ - 6}}\Omega m$.
Additional information:
Resistivity is the property of a material that depicts how strongly it resists the flow of electrons through it.
A conductor is a type of material that allows the flow of charge (electric current) in one or more directions as electrons are loosely bonded to the atom. Materials made of metal are common electric conductors.
An electric insulator is a material in which the electron does not flow freely as it has its electrons tightly bonded to the atoms; a very small amount of current will flow through it under the influence of an electric field.
The range of resistivity of an insulator is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
There’s one more type of material known as semiconductor ${10^{12}}\Omega m$ to ${10^{20}}\Omega m$
The semiconductor material is a material that has an electric resistivity value lying between that of a conductor, such as metallic copper, and an insulator, such as wood. Its resistivity falls as its temperature rises which are opposite to that of metals as in them as the temperature increases the number of charge carriers also increases leading to less resistivity.
The range of resistivity of semiconductors is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
Note:
The order of resistivity of metal, nonmetal, and semiconductor is in the order of insulator>semiconductor>metal. This all happens due to the atom’s ability to bind the electron; this determines the energy in the atom that prevents the electron from moving under an external electric field.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

CBSE Class 12 Physics Set 2 (55/2/2) 2025 Question Paper & Solutions

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Units and Measurements Mock Test for JEE Main 2025-26 Preparation

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

