
Repeated observations in an experiment gave the values 1.29, 1.33, 1.34, 1.35, 1.32, 1.36, 1.30 and 1.33. Calculate the mean value error, relative error and the percentage error.
Answer
133.5k+ views
Hint: In this question use the concept that the mean value will simply be the sum of all the observations divided by the total number of observations that is $\bar x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}} }}{n}$. Moreover for absolute error calculate the modulus of difference of mean value and the individual readings. For relative error find the ratio of mean absolute error to mean and percentage error will simply be the multiplication of relative error and 100. This will help approaching all the parts of this given problem statement.
Complete step-by-step solution -
Given repeated observations in an experiment are,
1.29, 1.33, 1.34, 1.35, 1.32, 1.36, 1.30 and 1.33.
Let,
${x_1} = 1.29,{x_2} = 1.33,{x_3} = 1.34,{x_4} = 1.35,{x_5} = 1.32,{x_6} = 1.36,{x_7} = 1.30{\text{ and }}{x_8} = 1.33$
$\left( i \right)$ Mean value
Mean value is the sum of all the values divided by the number of values.
So as we see that there are 8 readings.
And the sum of the readings is
1.29 + 1.33 + 1.34 + 1.35 + 1.32 + 1.36 + 1.30 + 1.33 = 10.62
Let the mean of readings is x
$ \Rightarrow x = \dfrac{{10.62}}{8} = 1.3275$
$\left( {ii} \right)$ Absolute error
Absolute error is the modulus of difference of mean value and the individual readings.
Therefore,
$\Delta {x_1} = \left| {x - {x_1}} \right|$ = |1.3275 – 1.29| = 0.0375
$\Delta {x_2} = \left| {x - {x_2}} \right|$= |1.3275 – 1.33| =|-0.0025|= 0.0025
$\Delta {x_3} = \left| {x - {x_3}} \right|$ = |1.3275 – 1.34| = |-0.0125| = 0.0125
$\Delta {x_4} = \left| {x - {x_4}} \right|$ = |1.3275 – 1.35| = |-0.0225| = 0.0225
$\Delta {x_5} = \left| {x - {x_5}} \right|$ = |1.3275 – 1.32| = 0.0075
$\Delta {x_6} = \left| {x - {x_6}} \right|$ = |1.3275 – 1.36| = |-0.0325| = 0.0325
$\Delta {x_7} = \left| {x - {x_7}} \right|$ = |1.3275 – 1.30| = 0.0275
$\Delta {x_8} = \left| {x - {x_8}} \right|$ = |1.3275 – 1.33| = |-0.0025| = 0.0025
$\left( {iii} \right)$ Relative error
It is the $\left( \pm \right)$of the ratio of mean absolute error to mean.
So first find out the mean absolute error $\left( {\Delta x} \right)$
$ \Rightarrow \Delta x = \dfrac{{\Delta {x_1} + \Delta {x_2} + \Delta {x_3} + \Delta {x_4} + \Delta {x_5} + \Delta {x_6} + \Delta {x_7} + \Delta {x_8}}}{8}$
Now substitute all the values we have,
$ \Rightarrow \Delta x = \dfrac{{0.0375 + 0.0025 + 0.0125 + 0.0225 + 0.0075 + 0.0325 + 0.0275 + 0.0025}}{8}$
$ \Rightarrow \Delta x = 0.018125$
So the relative error is
$ \Rightarrow \Delta \bar x = \pm \dfrac{{\Delta x}}{x} = \pm \dfrac{{0.018125}}{{1.3275}} = \pm 0.01365$
$\left( {iv} \right)$ Percentage error
Percentage error is the multiplication of relative error and 100.
%error = 100$ \times \left( { \pm 0.01365} \right)$ = $ \pm 1.365$%
So this is the required answer.
Note – Errors can simply be defined as the difference between the actual values with that of the calculated value. Error can be caused due to any reasons that include human error, or even machine error. Errors can broadly be classified into 3 categories that are syntax error, logical error and run-time errors.
Complete step-by-step solution -
Given repeated observations in an experiment are,
1.29, 1.33, 1.34, 1.35, 1.32, 1.36, 1.30 and 1.33.
Let,
${x_1} = 1.29,{x_2} = 1.33,{x_3} = 1.34,{x_4} = 1.35,{x_5} = 1.32,{x_6} = 1.36,{x_7} = 1.30{\text{ and }}{x_8} = 1.33$
$\left( i \right)$ Mean value
Mean value is the sum of all the values divided by the number of values.
So as we see that there are 8 readings.
And the sum of the readings is
1.29 + 1.33 + 1.34 + 1.35 + 1.32 + 1.36 + 1.30 + 1.33 = 10.62
Let the mean of readings is x
$ \Rightarrow x = \dfrac{{10.62}}{8} = 1.3275$
$\left( {ii} \right)$ Absolute error
Absolute error is the modulus of difference of mean value and the individual readings.
Therefore,
$\Delta {x_1} = \left| {x - {x_1}} \right|$ = |1.3275 – 1.29| = 0.0375
$\Delta {x_2} = \left| {x - {x_2}} \right|$= |1.3275 – 1.33| =|-0.0025|= 0.0025
$\Delta {x_3} = \left| {x - {x_3}} \right|$ = |1.3275 – 1.34| = |-0.0125| = 0.0125
$\Delta {x_4} = \left| {x - {x_4}} \right|$ = |1.3275 – 1.35| = |-0.0225| = 0.0225
$\Delta {x_5} = \left| {x - {x_5}} \right|$ = |1.3275 – 1.32| = 0.0075
$\Delta {x_6} = \left| {x - {x_6}} \right|$ = |1.3275 – 1.36| = |-0.0325| = 0.0325
$\Delta {x_7} = \left| {x - {x_7}} \right|$ = |1.3275 – 1.30| = 0.0275
$\Delta {x_8} = \left| {x - {x_8}} \right|$ = |1.3275 – 1.33| = |-0.0025| = 0.0025
$\left( {iii} \right)$ Relative error
It is the $\left( \pm \right)$of the ratio of mean absolute error to mean.
So first find out the mean absolute error $\left( {\Delta x} \right)$
$ \Rightarrow \Delta x = \dfrac{{\Delta {x_1} + \Delta {x_2} + \Delta {x_3} + \Delta {x_4} + \Delta {x_5} + \Delta {x_6} + \Delta {x_7} + \Delta {x_8}}}{8}$
Now substitute all the values we have,
$ \Rightarrow \Delta x = \dfrac{{0.0375 + 0.0025 + 0.0125 + 0.0225 + 0.0075 + 0.0325 + 0.0275 + 0.0025}}{8}$
$ \Rightarrow \Delta x = 0.018125$
So the relative error is
$ \Rightarrow \Delta \bar x = \pm \dfrac{{\Delta x}}{x} = \pm \dfrac{{0.018125}}{{1.3275}} = \pm 0.01365$
$\left( {iv} \right)$ Percentage error
Percentage error is the multiplication of relative error and 100.
%error = 100$ \times \left( { \pm 0.01365} \right)$ = $ \pm 1.365$%
So this is the required answer.
Note – Errors can simply be defined as the difference between the actual values with that of the calculated value. Error can be caused due to any reasons that include human error, or even machine error. Errors can broadly be classified into 3 categories that are syntax error, logical error and run-time errors.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
