
Rex Things throws his mother’s crystal vase vertically upwards with an initial velocity of \[26.2m/s\]. Determine the height to which the vase will rise above its initial height.
A) $34.0m$
B) $39.0m$
C) $35.0m$
D) $37.0m$
Answer
141.3k+ views
Hint: The vase is thrown vertically upwards hence its height will increase only in the vertical direction. Recall the formula to calculate maximum height during a projectile motion. Also the angle here is \[{{90}^{\circ }}\].
Formula Used:
The formula to calculate maximum height during a projectile motion is given by
\[{{H}_{\max }}=\dfrac{{{u}^{2}}{{\sin }^{2}}\theta }{2g}\]
Where
\[{{H}_{\max }}\] Represents maximum height
\[u\] Represents initial velocity
\[\theta \] Represents the angle at which the object is thrown with respect to horizontal
\[g\]Represents the acceleration due to gravity
Complete step by step answer:
Since the object is thrown vertically, the angle \[\theta \] will be \[{{90}^{\circ }}\]
To determine the height to which the vase will rise above its initial height, we will use the above mentioned formula
\[{{H}_{\max }}=\dfrac{{{u}^{2}}{{\sin }^{2}}\theta }{2g}\]
The given values are initial velocity (\[u\] ) \[=\] \[26.2m/s\], \[g=9.8m/{{s}^{2}}\], \[\theta ={{90}^{\circ }}\]
Putting these values in the above formula, we get
$\Rightarrow {{H}_{\max }}=\dfrac{{{(26.2)}^{2}}({{\sin }^{2}}{{90}^{\circ }})}{2(9.8)}$
\[\Rightarrow {{H}_{\max }}=\dfrac{(686.44)(1)}{19.6}\]
\[\Rightarrow {{H}_{\max }}=35.02m\]
When we round off this value to single decimal then the answer is \[35.0m\] which is option \[C\]
Note: In the given question the angle was not given but it is known that during vertically upwards motion the angle with the horizontal is \[{{90}^{\circ }}\].
Also remember that for calculating range we have a different formula,
\[R=\dfrac{{{u}^{2}}\sin 2\theta }{g}\]
Where \[R\]is the range
\[u\] Is the initial velocity
\[\theta \] Is the angle of projection with the horizontal
\[g\] Is the acceleration due to gravity
Also to increase the range in vertically upward motion we have to increase the initial velocity to get maximum height. And Range is maximum when the angle of projection \[\theta ={{90}^{\circ }}\]
\[\theta ={{45}^{\circ }}\]. Do remember that Range is always concerned with horizontal direction and Height is always concerned with vertical direction.
Formula Used:
The formula to calculate maximum height during a projectile motion is given by
\[{{H}_{\max }}=\dfrac{{{u}^{2}}{{\sin }^{2}}\theta }{2g}\]
Where
\[{{H}_{\max }}\] Represents maximum height
\[u\] Represents initial velocity
\[\theta \] Represents the angle at which the object is thrown with respect to horizontal
\[g\]Represents the acceleration due to gravity
Complete step by step answer:
Since the object is thrown vertically, the angle \[\theta \] will be \[{{90}^{\circ }}\]
To determine the height to which the vase will rise above its initial height, we will use the above mentioned formula
\[{{H}_{\max }}=\dfrac{{{u}^{2}}{{\sin }^{2}}\theta }{2g}\]
The given values are initial velocity (\[u\] ) \[=\] \[26.2m/s\], \[g=9.8m/{{s}^{2}}\], \[\theta ={{90}^{\circ }}\]
Putting these values in the above formula, we get
$\Rightarrow {{H}_{\max }}=\dfrac{{{(26.2)}^{2}}({{\sin }^{2}}{{90}^{\circ }})}{2(9.8)}$
\[\Rightarrow {{H}_{\max }}=\dfrac{(686.44)(1)}{19.6}\]
\[\Rightarrow {{H}_{\max }}=35.02m\]
When we round off this value to single decimal then the answer is \[35.0m\] which is option \[C\]
Note: In the given question the angle was not given but it is known that during vertically upwards motion the angle with the horizontal is \[{{90}^{\circ }}\].
Also remember that for calculating range we have a different formula,
\[R=\dfrac{{{u}^{2}}\sin 2\theta }{g}\]
Where \[R\]is the range
\[u\] Is the initial velocity
\[\theta \] Is the angle of projection with the horizontal
\[g\] Is the acceleration due to gravity
Also to increase the range in vertically upward motion we have to increase the initial velocity to get maximum height. And Range is maximum when the angle of projection \[\theta ={{90}^{\circ }}\]
\[\theta ={{45}^{\circ }}\]. Do remember that Range is always concerned with horizontal direction and Height is always concerned with vertical direction.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
