What is the rise in temperature of a collective drop when initially 1gm and 2gm drops travel with velocities \[10cm/sec\;\] and \[15cm/sec\]
A) \[6.6 \times {10^{ - 3}}\,^\circ C\]
B) \[66 \times {10^{ - 3}}\,^\circ C\]
C) \[660 \times {10^{ - 3}}\,^\circ C\]
D) \[6.6\,^\circ C\]
Answer
Verified
116.4k+ views
Hint: In this solution, we will calculate the kinetic energy of the drops before and after the collision. The decrease in kinetic energy will contribute to raising the temperature of the collective drop.
Formula used:
$Q = ms\Delta T$ where $Q$ is the energy needed to heat up a liquid by $\Delta T$ temperature difference and $s$ is the specific heat capacity of the liquid
Complete step by step answer:
We’ve been given the temperature of the drops as \[10cm/sec\; = 0.1\,m/s\] and \[15\,cm/sec\; = 0.15\,m/s\]. Let us start by calculating the velocity of the new drop. When the drops combine, the law of conservation of momentum holds true since there is no external force acting on the system. So, applying the law of conservation of momentum before and after coagulation, we get
${m_1}{v_1} + {m_2}{v_2} = m'v'$
Substituting ${m_1} = 1gm = 1 \times {10^{ - 3}}\,kg$, ${m_2} = 2gm = 2 \times {10^{ - 3}}\,kg$, \[{v_1} = 0.1\,m/sec\;\] and \[{v_2} = 0.15\,m/sec\], and $m' = {m_1} + {m_2} = 3 \times {10^{ - 3}}\,kg$ we get
$\left( {1 \times 0.1} \right) + (2 \times 0.15) = (1 + 2) \times v'$
Which gives us
$v = \dfrac{{40}}{3}\, \times {10^{ - 2}}\,m/s$
Now the kinetic energy of the two drops before the coagulation will be
${K_{init}} = \dfrac{1}{2} \times 1 \times {10^{ - 3}} \times {\left( {0.1} \right)^2} + \dfrac{1}{2} \times 2 \times {10^{ - 3}} \times {\left( {0.15} \right)^2}$
$ \Rightarrow {K_{init}} = 275 \times {10^{ - 7}}\,J$
Similarly, the kinetic energy after coagulating will be
${K_{final}} = \dfrac{1}{2}3 \times {10^{ - 3}} \times {\left( {\dfrac{{40}}{3}\, \times {{10}^{ - 2}}\,} \right)^2}$
$ \Rightarrow {K_{final}} = \dfrac{{800}}{3} \times {10^{ - 7}}\,J$
This difference in kinetic energy will raise the temperature of the water. The difference in kinetic energies will be
$\Delta K = \left( {275 - \dfrac{{800}}{3}} \right) \times {10^{ - 7}}$
$ \Rightarrow \Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$
This difference will heat the drop according to the equation of specific heat as
$\Delta K = ms\Delta T$
So, substituting $\Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$, $m = 3 \times {10^{ - 3}}\,kg$ and $s = 4.2$ for water, we get
$\dfrac{{25}}{3} \times {10^{ - 7}}\, = 3 \times {10^{ - 3}}\, \times 4.2 \times \Delta T$
So, the change in temperature will be
$\Delta T = \dfrac{{25}}{{9 \times 4.2}} = 66 \times {10^{ - 3}}\,^\circ C$
Hence the correct choice is option (B).
Note: Here we have assumed that all the difference in the kinetic energy will go to increasing the temperature of the drop however this is an ideal gas. In reality, there is some energy used when combining and as a result full conversion of kinetic to heat energy doesn’t occur.
Formula used:
$Q = ms\Delta T$ where $Q$ is the energy needed to heat up a liquid by $\Delta T$ temperature difference and $s$ is the specific heat capacity of the liquid
Complete step by step answer:
We’ve been given the temperature of the drops as \[10cm/sec\; = 0.1\,m/s\] and \[15\,cm/sec\; = 0.15\,m/s\]. Let us start by calculating the velocity of the new drop. When the drops combine, the law of conservation of momentum holds true since there is no external force acting on the system. So, applying the law of conservation of momentum before and after coagulation, we get
${m_1}{v_1} + {m_2}{v_2} = m'v'$
Substituting ${m_1} = 1gm = 1 \times {10^{ - 3}}\,kg$, ${m_2} = 2gm = 2 \times {10^{ - 3}}\,kg$, \[{v_1} = 0.1\,m/sec\;\] and \[{v_2} = 0.15\,m/sec\], and $m' = {m_1} + {m_2} = 3 \times {10^{ - 3}}\,kg$ we get
$\left( {1 \times 0.1} \right) + (2 \times 0.15) = (1 + 2) \times v'$
Which gives us
$v = \dfrac{{40}}{3}\, \times {10^{ - 2}}\,m/s$
Now the kinetic energy of the two drops before the coagulation will be
${K_{init}} = \dfrac{1}{2} \times 1 \times {10^{ - 3}} \times {\left( {0.1} \right)^2} + \dfrac{1}{2} \times 2 \times {10^{ - 3}} \times {\left( {0.15} \right)^2}$
$ \Rightarrow {K_{init}} = 275 \times {10^{ - 7}}\,J$
Similarly, the kinetic energy after coagulating will be
${K_{final}} = \dfrac{1}{2}3 \times {10^{ - 3}} \times {\left( {\dfrac{{40}}{3}\, \times {{10}^{ - 2}}\,} \right)^2}$
$ \Rightarrow {K_{final}} = \dfrac{{800}}{3} \times {10^{ - 7}}\,J$
This difference in kinetic energy will raise the temperature of the water. The difference in kinetic energies will be
$\Delta K = \left( {275 - \dfrac{{800}}{3}} \right) \times {10^{ - 7}}$
$ \Rightarrow \Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$
This difference will heat the drop according to the equation of specific heat as
$\Delta K = ms\Delta T$
So, substituting $\Delta K = \dfrac{{25}}{3} \times {10^{ - 7}}\,J$, $m = 3 \times {10^{ - 3}}\,kg$ and $s = 4.2$ for water, we get
$\dfrac{{25}}{3} \times {10^{ - 7}}\, = 3 \times {10^{ - 3}}\, \times 4.2 \times \Delta T$
So, the change in temperature will be
$\Delta T = \dfrac{{25}}{{9 \times 4.2}} = 66 \times {10^{ - 3}}\,^\circ C$
Hence the correct choice is option (B).
Note: Here we have assumed that all the difference in the kinetic energy will go to increasing the temperature of the drop however this is an ideal gas. In reality, there is some energy used when combining and as a result full conversion of kinetic to heat energy doesn’t occur.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids