Answer
Verified
112.8k+ views
Hint: Recall Newton’s laws of motion (Third law). Remember there is no external force acting on the rocket when the rocket is launched. Don’t confuse between Energy, momentum and force.
Complete step by step answer:
Newton’s third law states that, for every action there is an equal and opposite reaction. Consider the rocket and its launch pad to be a single system. Now in this system no external force is applied so the momentum of the system must be conserved.
Momentum is given as the product of mass and velocity
$\Rightarrow$\[p=mv\]
Where
$\Rightarrow$\[p\] Is the momentum
$\Rightarrow$\[m\] Is the mass of the object taken in consideration
$\Rightarrow$\[v\] Is the velocity of the object.
When a rocket is in the initial phase of it’s launch what happens is that when we accelerate a small amount of gas in one direction, it pushes back with an equal and opposite force, accelerating a much larger spaceship at a proportionately smaller rate.
The rocket gains momentum which is equal to the momentum of the gas expelled but in the opposite direction, the boosters begin to expel gases after the rocket has begun to travel and thus the rocket continues to gain momentum, so that they get faster and faster as long as the engine is operating.
It must be noted here that rocket boosters consume around \[11,000\] pounds of fuel per second. This is more than \[20\] lakh times the amount of fuel used by an average car. It must also be noted that rockets travel at a speed which is around \[7-8km/s\] .
All this is done conserving the momentum of the system.
Therefore the correct option is C
Note: When the rocket moves upwards its velocity increases but mass decreases. As momentum is a product of mass and velocity, the momentum of the rocket at any given instance is exactly the same as initial momentum. It is also clear from the definition of momentum that for a body at rest its momentum is zero. Since the velocity is zero.
Complete step by step answer:
Newton’s third law states that, for every action there is an equal and opposite reaction. Consider the rocket and its launch pad to be a single system. Now in this system no external force is applied so the momentum of the system must be conserved.
Momentum is given as the product of mass and velocity
$\Rightarrow$\[p=mv\]
Where
$\Rightarrow$\[p\] Is the momentum
$\Rightarrow$\[m\] Is the mass of the object taken in consideration
$\Rightarrow$\[v\] Is the velocity of the object.
When a rocket is in the initial phase of it’s launch what happens is that when we accelerate a small amount of gas in one direction, it pushes back with an equal and opposite force, accelerating a much larger spaceship at a proportionately smaller rate.
The rocket gains momentum which is equal to the momentum of the gas expelled but in the opposite direction, the boosters begin to expel gases after the rocket has begun to travel and thus the rocket continues to gain momentum, so that they get faster and faster as long as the engine is operating.
It must be noted here that rocket boosters consume around \[11,000\] pounds of fuel per second. This is more than \[20\] lakh times the amount of fuel used by an average car. It must also be noted that rockets travel at a speed which is around \[7-8km/s\] .
All this is done conserving the momentum of the system.
Therefore the correct option is C
Note: When the rocket moves upwards its velocity increases but mass decreases. As momentum is a product of mass and velocity, the momentum of the rocket at any given instance is exactly the same as initial momentum. It is also clear from the definition of momentum that for a body at rest its momentum is zero. Since the velocity is zero.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line