Answer
Verified
99.9k+ views
Hint The gravitational constant G is the small quantity and its measurement needs very sensitive arrangement . The first important successful measurement of this quantity was made by Cavendish in 1736 about 71 years after the law was formulated.
Complete Step by step solution
As we all know that in the earth if two particles of masses ${m_1}$ and ${m_2}$are placed in a distance of $r$unit in the earth. There between these two particles a force of attraction works called gravitational force.
And which is equal to :
$gravitational{\text{ force (F) = }}\dfrac{{{\text{G}}{{\text{m}}_1}{{\text{m}}_2}}}{{{r^2}}}$, where each symbol have its usual meaning.
Now from above given formula we can write-
$G = \dfrac{{F{r^2}}}{{{m_1}{m_2}}}$
Unit of force is newton(N)
Unit of distance between masses will me meter(m)
Unit of mass will be kilogram (kg)
So from above formula
Unit of gravitational constant (G) will be $\dfrac{{N{m^2}}}{{k{g^2}}} = N{m^2}k{g^{ - 2}}$
Hence S.I. unit of gravitation constant is $N{m^2}k{g^{ - 2}}$
Therefore, answer number D will be correct option
Note The value of gravitation constant is very small.
For numerical purpose we use value of gravitational constant as $6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
Value of gravitation constant is very low in comparison with the electrical force constant
Therefore electric force is more dominant over the gravitational force.
Gravitational force is always attractive in nature whereas electric force is attractive or repulsive with respect to the charges.
Complete Step by step solution
As we all know that in the earth if two particles of masses ${m_1}$ and ${m_2}$are placed in a distance of $r$unit in the earth. There between these two particles a force of attraction works called gravitational force.
And which is equal to :
$gravitational{\text{ force (F) = }}\dfrac{{{\text{G}}{{\text{m}}_1}{{\text{m}}_2}}}{{{r^2}}}$, where each symbol have its usual meaning.
Now from above given formula we can write-
$G = \dfrac{{F{r^2}}}{{{m_1}{m_2}}}$
Unit of force is newton(N)
Unit of distance between masses will me meter(m)
Unit of mass will be kilogram (kg)
So from above formula
Unit of gravitational constant (G) will be $\dfrac{{N{m^2}}}{{k{g^2}}} = N{m^2}k{g^{ - 2}}$
Hence S.I. unit of gravitation constant is $N{m^2}k{g^{ - 2}}$
Therefore, answer number D will be correct option
Note The value of gravitation constant is very small.
For numerical purpose we use value of gravitational constant as $6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
Value of gravitation constant is very low in comparison with the electrical force constant
Therefore electric force is more dominant over the gravitational force.
Gravitational force is always attractive in nature whereas electric force is attractive or repulsive with respect to the charges.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main