Answer
Verified
112.5k+ views
Hint The gravitational constant G is the small quantity and its measurement needs very sensitive arrangement . The first important successful measurement of this quantity was made by Cavendish in 1736 about 71 years after the law was formulated.
Complete Step by step solution
As we all know that in the earth if two particles of masses ${m_1}$ and ${m_2}$are placed in a distance of $r$unit in the earth. There between these two particles a force of attraction works called gravitational force.
And which is equal to :
$gravitational{\text{ force (F) = }}\dfrac{{{\text{G}}{{\text{m}}_1}{{\text{m}}_2}}}{{{r^2}}}$, where each symbol have its usual meaning.
Now from above given formula we can write-
$G = \dfrac{{F{r^2}}}{{{m_1}{m_2}}}$
Unit of force is newton(N)
Unit of distance between masses will me meter(m)
Unit of mass will be kilogram (kg)
So from above formula
Unit of gravitational constant (G) will be $\dfrac{{N{m^2}}}{{k{g^2}}} = N{m^2}k{g^{ - 2}}$
Hence S.I. unit of gravitation constant is $N{m^2}k{g^{ - 2}}$
Therefore, answer number D will be correct option
Note The value of gravitation constant is very small.
For numerical purpose we use value of gravitational constant as $6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
Value of gravitation constant is very low in comparison with the electrical force constant
Therefore electric force is more dominant over the gravitational force.
Gravitational force is always attractive in nature whereas electric force is attractive or repulsive with respect to the charges.
Complete Step by step solution
As we all know that in the earth if two particles of masses ${m_1}$ and ${m_2}$are placed in a distance of $r$unit in the earth. There between these two particles a force of attraction works called gravitational force.
And which is equal to :
$gravitational{\text{ force (F) = }}\dfrac{{{\text{G}}{{\text{m}}_1}{{\text{m}}_2}}}{{{r^2}}}$, where each symbol have its usual meaning.
Now from above given formula we can write-
$G = \dfrac{{F{r^2}}}{{{m_1}{m_2}}}$
Unit of force is newton(N)
Unit of distance between masses will me meter(m)
Unit of mass will be kilogram (kg)
So from above formula
Unit of gravitational constant (G) will be $\dfrac{{N{m^2}}}{{k{g^2}}} = N{m^2}k{g^{ - 2}}$
Hence S.I. unit of gravitation constant is $N{m^2}k{g^{ - 2}}$
Therefore, answer number D will be correct option
Note The value of gravitation constant is very small.
For numerical purpose we use value of gravitational constant as $6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
Value of gravitation constant is very low in comparison with the electrical force constant
Therefore electric force is more dominant over the gravitational force.
Gravitational force is always attractive in nature whereas electric force is attractive or repulsive with respect to the charges.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking