Answer
Verified
110.7k+ views
Hint: Some part of the wave will be reflected back and only some part of it will be transmitted to B. First calculate the amplitude of this transmitted wave, and then calculate the power in each of the wires and then their ratio. This ratio will be equal to their energy ratio as time will be the same for both and hence will get cancelled out. This will be the final answer.
Formula Used:
Amplitude of transmitted wave, ${A_t} = \dfrac{{2{v_B}}}{{{v_a} + {v_B}}}{A_i}$ where, ${v_B}$ is the velocity of wave in string B, ${v_A}$is the velocity of wave in string A, ${A_i}$ is the incident amplitude, or the amplitude of wave in string A
Velocity of a wave in a string, $v = \sqrt {\dfrac{T}{\mu }} $ where, $T$ is the tension in the string and $\mu $ is the mass per unit length of the string.
Power of a wave, $P = \dfrac{1}{2}\mu v{\omega ^2}{A^2}$ where, $\mu $ is the mass per unit length of the string, $v$ is the velocity of the wave in string, $\omega $ is the angular frequency of the wave, $A$ is the amplitude of the wave.
Complete step by step solution:
The wave coming from string A will have an amplitude ${A_i}$ , called the incident amplitude. This wave will travel through the string until it meets string B, where a part of it will be reflected back in string A in the opposite direction of the incident wave, and the other part will propagate through B. This wave is called the transmitted wave and its amplitude, ${A_t}$ is called transmitted amplitude.
From the formula, we have amplitude of transmitted wave, ${A_t} = \dfrac{{2{v_B}}}{{{v_a} + {v_B}}}{A_i}$
Also, we know that velocity of a wave in a string, $v = \sqrt {\dfrac{T}{\mu }} $
Using these two formulas, we get ${A_t} = \dfrac{{2\sqrt {\dfrac{{{T_B}}}{{{\mu _B}}}} }}{{\sqrt {\dfrac{{{T_A}}}{{{\mu _A}}}} + \sqrt {\dfrac{{{T_B}}}{{{\mu _B}}}} }}{A_i}$ where ${T_B}$ is tension in string B, ${T_A}$ is tension in string A, ${\mu _A}$ is mass per unit volume of string A, ${\mu _B}$ is mass per unit volume of string B
Since it is given that tension in the strings is equal, we can write above equation as
${A_t} = \dfrac{{2\sqrt {\dfrac{T}{{{\mu _B}}}} }}{{\sqrt {\dfrac{T}{{{\mu _A}}}} + \sqrt {\dfrac{T}{{{\mu _B}}}} }}{A_i}$
Now we are given in the question that mass per unit length of string A, ${\mu _A} = {\mu _1}$ and mass per unit length of string B, ${\mu _B} = 4{\mu _1}$
Substituting these in above formula, we get \[{A_t} = \dfrac{{2\sqrt {\dfrac{T}{{4{\mu _1}}}} }}{{\sqrt {\dfrac{T}{{{\mu _1}}}} + \sqrt {\dfrac{T}{{4{\mu _1}}}} }}{A_i} = \dfrac{{\sqrt {\dfrac{T}{{{\mu _1}}}} }}{{\sqrt {\dfrac{T}{{{\mu _1}}}} + \dfrac{1}{2}\sqrt {\dfrac{T}{{{\mu _1}}}} }}{A_i}\] (4 comes out of the square root and becomes 2)
\[{A_t} = \dfrac{{\sqrt {\dfrac{T}{{{\mu _1}}}} }}{{\sqrt {\dfrac{T}{{{\mu _1}}}} (1 + \dfrac{1}{2})}}{A_i} = \dfrac{2}{3}{A_i}\] (simplifying the equation)
Now, the power of a wave in string is given by $P = \dfrac{1}{2}\mu v{\omega ^2}{A^2}$
Power in string A, ${P_A} = \dfrac{1}{2}{\mu _A}{v_A}{\omega ^2}{A_i}^2 = \dfrac{1}{2}{\mu _i}\sqrt {\dfrac{T}{{{\mu _i}}}} {\omega ^2}{A_i}^2$ (substituting the respective values)
Power in string A, ${P_B} = \dfrac{1}{2}{\mu _B}{v_B}{\omega ^2}{A_t}^2 = \dfrac{1}{2}4{\mu _i}\sqrt {\dfrac{T}{{4{\mu _i}}}} {\omega ^2}{A_t}^2$ (substituting the respective values)
Now, \[\dfrac{{{P_A}}}{{{P_B}}} = \dfrac{{\dfrac{1}{2}{\mu _i}\sqrt {\dfrac{T}{{{\mu _i}}}} {\omega ^2}{A_i}^2}}{{\dfrac{1}{2}4{\mu _i}\sqrt {\dfrac{T}{{4{\mu _i}}}} {\omega ^2}{A_t}^2}} = \dfrac{{\dfrac{1}{2}{\mu _i}\sqrt {\dfrac{T}{{{\mu _i}}}} {\omega ^2}{A_i}^2}}{{\dfrac{1}{2}4{\mu _i}\sqrt {\dfrac{T}{{4{\mu _i}}}} {\omega ^2}{{(\dfrac{2}{3}{A_i})}^2}}}\] (substituting the value of ${A_t}$ as calculated before)
On cancelling like terms and solving roots, we get \[\dfrac{{{P_A}}}{{{P_B}}} = \dfrac{{\sqrt {\dfrac{T}{{{\mu _i}}}} }}{{4 \times \dfrac{1}{2} \times \sqrt {\dfrac{T}{{{\mu _i}}}} \times \dfrac{4}{9}}} = \dfrac{1}{{\dfrac{8}{9}}} = \dfrac{9}{8}\]
We know that Energy, $E = P \times t$ , where $P$ is power and $t$ is time.
Time taken for both wires will be equal and hence, power will be equal to energy.
$ \Rightarrow \dfrac{{{E_A}}}{{{E_B}}} = \dfrac{9}{8}$ or, $\dfrac{{{E_B}}}{{{E_A}}} = \dfrac{8}{9}$
Therefore, $\dfrac{8}{9}$ parts of energy in string 1 goes to string 2.
Hence option D is the final answer.
Note: In questions like these, it may not always occur in mind what to do next. Hence, you might need to memorize some important steps of these questions as their steps are not related to each other. It will help you solve this question and also, be faster. Memorizing the power conversion step, or the velocity conversion step will help.
Formula Used:
Amplitude of transmitted wave, ${A_t} = \dfrac{{2{v_B}}}{{{v_a} + {v_B}}}{A_i}$ where, ${v_B}$ is the velocity of wave in string B, ${v_A}$is the velocity of wave in string A, ${A_i}$ is the incident amplitude, or the amplitude of wave in string A
Velocity of a wave in a string, $v = \sqrt {\dfrac{T}{\mu }} $ where, $T$ is the tension in the string and $\mu $ is the mass per unit length of the string.
Power of a wave, $P = \dfrac{1}{2}\mu v{\omega ^2}{A^2}$ where, $\mu $ is the mass per unit length of the string, $v$ is the velocity of the wave in string, $\omega $ is the angular frequency of the wave, $A$ is the amplitude of the wave.
Complete step by step solution:
The wave coming from string A will have an amplitude ${A_i}$ , called the incident amplitude. This wave will travel through the string until it meets string B, where a part of it will be reflected back in string A in the opposite direction of the incident wave, and the other part will propagate through B. This wave is called the transmitted wave and its amplitude, ${A_t}$ is called transmitted amplitude.
From the formula, we have amplitude of transmitted wave, ${A_t} = \dfrac{{2{v_B}}}{{{v_a} + {v_B}}}{A_i}$
Also, we know that velocity of a wave in a string, $v = \sqrt {\dfrac{T}{\mu }} $
Using these two formulas, we get ${A_t} = \dfrac{{2\sqrt {\dfrac{{{T_B}}}{{{\mu _B}}}} }}{{\sqrt {\dfrac{{{T_A}}}{{{\mu _A}}}} + \sqrt {\dfrac{{{T_B}}}{{{\mu _B}}}} }}{A_i}$ where ${T_B}$ is tension in string B, ${T_A}$ is tension in string A, ${\mu _A}$ is mass per unit volume of string A, ${\mu _B}$ is mass per unit volume of string B
Since it is given that tension in the strings is equal, we can write above equation as
${A_t} = \dfrac{{2\sqrt {\dfrac{T}{{{\mu _B}}}} }}{{\sqrt {\dfrac{T}{{{\mu _A}}}} + \sqrt {\dfrac{T}{{{\mu _B}}}} }}{A_i}$
Now we are given in the question that mass per unit length of string A, ${\mu _A} = {\mu _1}$ and mass per unit length of string B, ${\mu _B} = 4{\mu _1}$
Substituting these in above formula, we get \[{A_t} = \dfrac{{2\sqrt {\dfrac{T}{{4{\mu _1}}}} }}{{\sqrt {\dfrac{T}{{{\mu _1}}}} + \sqrt {\dfrac{T}{{4{\mu _1}}}} }}{A_i} = \dfrac{{\sqrt {\dfrac{T}{{{\mu _1}}}} }}{{\sqrt {\dfrac{T}{{{\mu _1}}}} + \dfrac{1}{2}\sqrt {\dfrac{T}{{{\mu _1}}}} }}{A_i}\] (4 comes out of the square root and becomes 2)
\[{A_t} = \dfrac{{\sqrt {\dfrac{T}{{{\mu _1}}}} }}{{\sqrt {\dfrac{T}{{{\mu _1}}}} (1 + \dfrac{1}{2})}}{A_i} = \dfrac{2}{3}{A_i}\] (simplifying the equation)
Now, the power of a wave in string is given by $P = \dfrac{1}{2}\mu v{\omega ^2}{A^2}$
Power in string A, ${P_A} = \dfrac{1}{2}{\mu _A}{v_A}{\omega ^2}{A_i}^2 = \dfrac{1}{2}{\mu _i}\sqrt {\dfrac{T}{{{\mu _i}}}} {\omega ^2}{A_i}^2$ (substituting the respective values)
Power in string A, ${P_B} = \dfrac{1}{2}{\mu _B}{v_B}{\omega ^2}{A_t}^2 = \dfrac{1}{2}4{\mu _i}\sqrt {\dfrac{T}{{4{\mu _i}}}} {\omega ^2}{A_t}^2$ (substituting the respective values)
Now, \[\dfrac{{{P_A}}}{{{P_B}}} = \dfrac{{\dfrac{1}{2}{\mu _i}\sqrt {\dfrac{T}{{{\mu _i}}}} {\omega ^2}{A_i}^2}}{{\dfrac{1}{2}4{\mu _i}\sqrt {\dfrac{T}{{4{\mu _i}}}} {\omega ^2}{A_t}^2}} = \dfrac{{\dfrac{1}{2}{\mu _i}\sqrt {\dfrac{T}{{{\mu _i}}}} {\omega ^2}{A_i}^2}}{{\dfrac{1}{2}4{\mu _i}\sqrt {\dfrac{T}{{4{\mu _i}}}} {\omega ^2}{{(\dfrac{2}{3}{A_i})}^2}}}\] (substituting the value of ${A_t}$ as calculated before)
On cancelling like terms and solving roots, we get \[\dfrac{{{P_A}}}{{{P_B}}} = \dfrac{{\sqrt {\dfrac{T}{{{\mu _i}}}} }}{{4 \times \dfrac{1}{2} \times \sqrt {\dfrac{T}{{{\mu _i}}}} \times \dfrac{4}{9}}} = \dfrac{1}{{\dfrac{8}{9}}} = \dfrac{9}{8}\]
We know that Energy, $E = P \times t$ , where $P$ is power and $t$ is time.
Time taken for both wires will be equal and hence, power will be equal to energy.
$ \Rightarrow \dfrac{{{E_A}}}{{{E_B}}} = \dfrac{9}{8}$ or, $\dfrac{{{E_B}}}{{{E_A}}} = \dfrac{8}{9}$
Therefore, $\dfrac{8}{9}$ parts of energy in string 1 goes to string 2.
Hence option D is the final answer.
Note: In questions like these, it may not always occur in mind what to do next. Hence, you might need to memorize some important steps of these questions as their steps are not related to each other. It will help you solve this question and also, be faster. Memorizing the power conversion step, or the velocity conversion step will help.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main